Spatio-temporal changes of rubber plantations in Hainan Island over the past 30 years

LI Guangyang, KOU Weili, CHEN Bangqian, WU Zhixiang, ZHANG Xicai, YUNG Ting, MA Jun, SUN Rui, LI Ying

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (1) : 189-198.

PDF(3792 KB)
PDF(3792 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (1) : 189-198. DOI: 10.12302/j.issn.1000-2006.202109041

Spatio-temporal changes of rubber plantations in Hainan Island over the past 30 years

Author information +
History +

Abstract

【Objective】 Natural rubber (NR) is an important strategic material. To promote the sustainable development of China’s natural rubber industry, it is of great significance to reveal the spatio-temporal changes in rubber plantations on Hainan Island, which is the second largest rubber growing area and one of the only two tropical regions in China. 【Method】 Based on the seven-phase distribution maps of rubber plantations on Hainan Island, this study analyzes the spatio-temporal changes of rubber plantations from 1990 to 2020 on the Google Earth Engine (GEE) cloud computing platform. 【Result】 (1) The area of rubber plantations has increased significantly over the past 30 years, from 344 400 hectares in 1990 to 585 800 hectares in 2020 (a net increase of 70.11%), with a general spatial trend that can be characterized as an increase in the north and a decrease in the south. (2) Among these cities/counties, Danzhou City, Baisha County, Qiongzhong County and Chengmai County have the largest rubber plantation area in order, accounting for 51.58% of the total rubber plantation area in 2020, while Sanya City, Dongfang City, Wenchang City, and Lingshui County have the smallest area, accounting for only 5.22% of the total rubber plantation area in 2020. (3) Approximately 91.24% of the rubber plantations in Hainan Island are located below 300 meters above sea level, and few rubber plantations are distributed in areas with elevation above 600 meters; finally, 97.75% of plantations are located in regions with slope less than 25°. (4) In the past 30 years, rubber plantations have increased the most in areas with elevation of 50-200 meters and slope of 0-5°. (5) A small portion of rubber plantations are distributed in the experimental or buffer zones of the four national protected areas, but the total area shows a clear downward trend. Among the plantations studied, the area of rubber plantations in the Bawangling Nature Reserve is the largest and that in the Wuzhishan Nature Reserve is the smallest, with a cumulative decrease of 68.02% in the last 30 years. Although the area of rubber plantations has increased significantly in the last 30 years, they are concentrated in areas of low elevation and are relatively flat and have no impact on tropical rainforests that occur in high elevation regions. 【Conclusion】 In general, the development model for rubber plantations on Hainan Island is sustainable, as it has a minimal impact on tropical forests and the general ecological integrity of the surrounding area.

Key words

rubber plantation / Hainan Island / spatial-temporal changes / national nature reserve

Cite this article

Download Citations
LI Guangyang , KOU Weili , CHEN Bangqian , et al . Spatio-temporal changes of rubber plantations in Hainan Island over the past 30 years[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2023, 47(1): 189-198 https://doi.org/10.12302/j.issn.1000-2006.202109041

References

[1]
AHRENDS A, HOLLINGSWORTH P M, ZIEGLER A D, et al. Current trends of rubber plantation expansion may threaten biodiversity and livelihoods[J]. Glob Environ Change, 2015, 34:48-58.DOI:10.1016/j.gloenvcha.2015.06.002.
[2]
何康, 黄宗道. 热带北缘橡胶树栽培[M]. 广州: 广东科技出版社, 1987.
HE K, HUANG Z D. Cultivation of rubber trees in the northern margin of tropical China[M]. Guangzhou: Guangdong Science and Technology Press, 1987.
[3]
莫业勇. 天然橡胶供需形势和风险分析[J]. 中国热带农业, 2019(2):4-6,10.
MO Y Y. Natural rubber supply and demand situation and risk analysis[J]. China Trop Agric, 2019(2):4-6, 10.DOI:10.3969/j.issn.1673-0658.2019.02.002.
[4]
ZHAI D L, CANNON C H, SLIK J W F, et al. Rubber and pulp plantations represent a double threat to Hainan’s natural tropical forests[J]. J Environ Manag, 2012, 96(1):64-73.DOI:10.1016/j.jenvman.2011.10.011.
[5]
CHEN C F, LIU W J, JIANG X J, et al. Effects of rubber-based agroforestry systems on soil aggregation and associated soil organic carbon:implications for land use[J]. Geoderma, 2017, 299:13-24.DOI:10.1016/j.geoderma.2017.03.021.
[6]
YE S, ROGAN J, SANGERMANO F. Monitoring rubber plantation expansion using Landsat data time series and a Shapelet-based approach[J]. ISPRS J Photogramm Remote Sens, 2018, 136:134-143.DOI:10.1016/j.isprsjprs.2018.01.002.
[7]
ZHANG M X, ZHU J G. Natural forest change in Hainan,China,1991-2008 and conservation suggestions[C]// Tropical Forests, 2012:297-304.(2021-09-01).https://www.researchgate.net/publication/221928422.
[8]
SURATMAN M N, BULL G Q, LECKIE D G, et al. Prediction models for estimating the area,volume, and age of rubber (Hevea brasiliensis) plantations in Malaysia using Landsat TM data[J]. Int Forest Rev, 2004, 6(1):1-12.DOI:10.1505/ifor.6.1.1.32055.
[9]
陈汇林, 陈小敏, 陈珍丽, 等. 基于MODIS遥感数据提取海南橡胶信息初步研究[J]. 热带作物学报, 2010, 31(7):1181-1185.
CHEN H L, CHEN X M, CHEN Z L, et al. A primary study on rubber acreage estimation from MODIS-based information in Hainan[J]. Chin J Trop Crops, 2010, 31(7):1181-1185.DOI:10.3969/j.issn.1000-2561.2010.07.025.
[10]
LI Z, FOX J M. Mapping rubber tree growth in mainland southeast Asia using time-series MODIS 250 m NDVI and statistical data[J]. Appl Geogr, 2012, 32(2):420-432.DOI:10.1016/j.apgeog.2011.06.018.
[11]
SENF C, PFLUGMACHER D, VAN DER LINDEN S, et al. Mapping rubber plantations and natural forests in Xishuangbanna (southwest China) using multi-spectral phenological metrics from MODIS time series[J]. Remote Sens, 2013, 5(6):2795-2812.DOI:10.3390/rs5062795.
[12]
DONG J W, XIAO X M, CHEN B Q, et al. Mapping deciduous rubber plantations through integration of PALSAR and multi-temporal landsat imagery[J]. Remote Sens Environ, 2013, 134:392-402.DOI:10.1016/j.rse.2013.03.014.
[13]
XIAO C W, LI P, FENG Z M. A renormalized modified normalized burn ratio (RMNBR) index for detecting mature rubber plantations with Landsat-8 OLI in Xishuangbanna,China[J]. Remote Sens Lett, 2019, 10(3):214-223.DOI:10.1080/2150704X.2018.1541106.
[14]
ZHU Z, WANG S X, WOODCOCK C E. Improvement and expansion of the Fmask algorithm:cloud,cloud shadow,and snow detection for Landsats 4-7,8,and Sentinel 2 images[J]. Remote Sens Environ, 2015, 159:269-277.DOI:10.1016/j.rse.2014.12.014.
[15]
CHEN B Q, LI X P, XIAO X M, et al. Mapping tropical forests and deciduous rubber plantations in Hainan Island,China by integrating PALSAR 25-m and multi-temporal Landsat images[J]. Int J Appl Earth Obs Geoinformation, 2016, 50:117-130.DOI:10.1016/j.jag.2016.03.011.
[16]
FAN H, FU X H, ZHANG Z, et al. Phenology-based vegetation index differencing for mapping of rubber plantations using landsat OLI data[J]. Remote Sens, 2015, 7(5):6041-6058.DOI:10.3390/rs70506041.
[17]
GAO S P, LIU X L, BO Y C, et al. Rubber identification based on blended high spatio-temporal resolution optical remote sensing data:a case study in Xishuangbanna[J]. Remote Sens, 2019, 11(5):496.DOI:10.3390/rs11050496.
[18]
ZHAI D L, DONG J W, CADISCH G, et al. Comparison of pixel-and object-based approaches in phenology-based rubber plantation mapping in fragmented landscapes[J]. Remote Sens, 2017, 10(1):44.DOI:10.3390/rs10010044.
[19]
廖谌婳, 李鹏, 封志明, 等. 西双版纳橡胶林面积遥感监测和时空变化[J]. 农业工程学报, 2014, 30(22):170-180.
LIAO C H, LI P, FENG Z M, et al. Area monitoring by remote sensing and spatiotemporal variation of rubber plantations in Xishuangbanna[J]. Trans Chin Soc Agric Eng, 2014, 30(22):170-180.DOI:10.3969/j.issn.1002-6819.2014.22.021.
[20]
寇卫利. 基于多源遥感的橡胶林时空演变研究[D]. 昆明: 昆明理工大学, 2015:151.
KOU W L. Spatial-temporal evolution of rubber forest based on multi-source remote sensing[D]. Kunming: Kunmig University of Science and Technology, 2015:151.
[21]
XIAO C W, LI P, FENG Z M. Monitoring annual dynamics of mature rubber plantations in Xishuangbanna during 1987-2018 using landsat time series data:a multiple normalization approach[J]. Int J Appl Earth Obs Geoinformation, 2019, 77:30-41.DOI:10.1016/j.jag.2018.12.006.
[22]
LIU X N, FENG Z M, JIANG L G, et al. Rubber plantation and its relationship with topographical factors in the border region of China,Laos and Myanmar[J]. J Geogr Sci, 2013, 23(6):1019-1040.DOI:10.1007/s11442-013-1060-4.
[23]
YANG X Q, BLAGODATSKY S, LIPPE M, et al. Land-use change impact on time-averaged carbon balances:rubber expansion and reforestation in a biosphere reserve,south-west China[J]. For Ecol Manag, 2016, 372:149-163.DOI:10.1016/j.foreco.2016.04.009.
[24]
冷静, 张春霞, 吕佳琪, 等. 纳版河自然保护区橡胶和农作物种植对畜禽养殖数量的影响[J]. 应用生态学报, 2011, 22(10):2693-2698.
LENG J, ZHANG C X, LYU J Q, et al. Effects of planting rubber and crops on the keeping number of livestock and poultry in the Naban River Watershed National Nature Reserve[J]. Chin J Appl Ecol, 2011, 22(10):2693-2698.
A total of 207 householders from 13 natural villages in the Naban River Watershed National Nature Reserve were chosen for a systematic survey on the farming and livestock husbandry, aimed to evaluate the effects of planting rubber and crops on the keeping number of livestock and poultry in the study area. The livestock and poultry bred in the Reserve were mainly buffalo, Yunnan Yellow cattle, small-eared pig,  Chahua chicken, and a few Banna game fowls. Exotic breeds were very limited. From 1991 to 2008, the planting area of rubber increased year by year, giving negative effects on the corn, rice, and cash crop production as well as the keeping number of livestock and poultry. Planting rubber had significant negative effects on the keeping number of buffalo and small-eared pig. The families planting rubber kept significantly less buffalo and small-eared pig, as compared to those not planting rubber. The planting areas of corn, rice, and cash crops had positive effects on the keeping number of buffalo, Yunnan Yellow cattle, and small-eared pig, and the total planting area of the crops had active effects on the keeping number of buffalo and Chahua chicken. The development of rubber production led to an obvious change in land use pattern, which in turn had significant effects on the keeping number of livestock and poultry. With the increasing rubber planting area year by year, the local livestock husbandry would be restrained.
[25]
SODHI N S, KOH L P, BROOK B W, et al. Southeast Asian biodiversity:an impending disaster[J]. Trends Ecol Evol, 2004, 19(12):654-660.DOI:10.1016/j.tree.2004.09.006.
[26]
GORELICK N, HANCHER M, DIXON M, et al. Google earth engine:planetary-scale geospatial analysis for everyone[J]. Remote Sens Environ, 2017, 202:18-27.DOI:10.1016/j.rse.2017.06.031.
[27]
CHASTAIN R, HOUSMAN I, GOLDSTEIN J, et al. Empirical cross sensor comparison of Sentinel-2A and 2B MSI,Landsat-8 OLI,and Landsat-7 ETM+ top of atmosphere spectral characteristics over the conterminous United States[J]. Remote Sens Environ, 2019, 221:274-285.DOI:10.1016/j.rse.2018.11.012.
[28]
CHEN B Q, XIAO X M, WU Z X, et al. Identifying establishment year and pre-conversion land cover of rubber plantations on Hainan Island,China using landsat data during 1987-2015[J]. Remote Sens, 2018, 10(8):1240.DOI:10.3390/rs10081240.
[29]
FARR T G, ROSEN P A, CARO E, et al. The shuttle radar topography mission[J]. Rev Geophys, 2007, 45(2):RG2004.DOI:10.1029/2005rg000183.
[30]
莫业勇. 2009年天然橡胶产销情况与2010年天然橡胶市场预测[J]. 中国热带农业, 2010(2):12-15.
MO Y Y. Natural rubber production and marketing in 2009 and natural rubber market forecast in 2010[J]. China Trop Agric, 2010(2):12-15.DOI:10.3969/j.issn.1673-0658.2010.02.006.
[31]
孙娟, 于敏, 姜明伦. 国际天然橡胶价格波动因素分析[J]. 世界农业, 2014(11):88-93.
SUN J, YU M, JIANG M L. International natural rubber price fluctuation factor analysis[J]. World Agric, 2014(11):88-93.DOI:10.13856/j.cn11-1097/s.2014.11.021.
[32]
李宁, 白蕤, 伍露, 等. 未来气候变化对海南橡胶树春季物候期的影响[J]. 应用生态学报, 2020, 31(4):1241-1249.
LI N, BAI R, WU L, et al. Impacts of future climate change on spring phenology stages of rubber tree in Hainan,China[J]. Chin J Appl Ecol, 2020, 31(4):1241-1249.DOI:10.13287/j.1001-9332.202004.002.
[33]
刘少军, 周广胜, 房世波, 等. 未来气候变化对中国天然橡胶种植气候适宜区的影响[J]. 应用生态学报, 2015, 26(7):2083-2090.
Abstract
全球气候变暖将严重影响中国天然橡胶种植的气候适宜区分布.根据影响中国橡胶种植的5个主导气候因子,即最冷月平均温度、极端最低温度平均值、月平均温度≥18 ℃月份、年平均气温和年平均降水量,基于最大熵MaxEnt模型,利用1981—2010年全国气候数据和RCP4.5情景的气候预估,分析了1981—2010、2041—2060、2061—2080年中国天然橡胶种植的气候适宜区变化.结果表明: 随着未来气候变化,2041—2060和2061—2080年中国天然橡胶的种植气候适宜区范围总体呈北扩趋势,对橡胶树北移有利. 2041—2060、2061—2080年中国天然橡胶气候适宜区总面积较1981—2010年呈增长趋势,高适宜区和中适宜区的面积均有增加趋势,而低适宜区面积呈减少趋势.局部区域气候适宜性发生明显变化:云南的橡胶主产区的适宜区总面积减少,其中,云南省的景洪、勐腊等地将由现在的高适宜区转变为中适宜区,海南岛及广东雷州半岛的橡胶种植高适宜区面积明显增加,在台湾岛出现了新的橡胶种植低适宜区等.
LIU S J, ZHOU G S, FANG S B, et al. Effects of future climate change on climatic suitability of rubber plantation in China[J]. Chin J Appl Ecol, 2015, 26(7):2083-2090.DOI:10.13287/j.1001-9332.20150506.023.
[34]
张明洁, 张京红, 刘少军, 等. 基于FY-3A的海南岛橡胶林台风灾害遥感监测:以“纳沙”台风为例[J]. 自然灾害学报, 2014, 23(3):86-92.
ZHANG M J, ZHANG J H, LIU S J, et al. TY-3A-based remote sensing monitoring of “Nesat” typhoon damage to rubber plantations in Hainan Island[J]. J Nat Disasters, 2014, 23(3):86-92.DOI:10.13577/j.jnd.2014.0311.
[35]
余伟, 张木兰, 麦全法, 等. 台风 “达维” 对海南农垦橡胶产业的损害及所引发的对今后产业发展的思考[J]. 热带农业科学, 2006, 26(4):41-43.
YU W, ZHANG M L, MAI Q F, et al. Damage of typhoon damrey to the rubber industry in Hainan state farm bureau and its countermeasures for future development[J]. Chin J Trop Agric, 2006, 26(4):41-43.DOI:10.3969/j.issn.1009-2196.2006.04.016.
[36]
刘怡媛, 肖池伟, 李鹏, 等. 基于CRNBR物候算法的西双版纳橡胶成林提取及时空变研究[J]. 地球信息科学学报, 2019, 21(3):467-474.
Abstract
基于西双版纳2014年和2018年旱季Landsat-8 OLI遥感影像,利用橡胶林落叶-新叶萌生期内归一化焚烧指数变化率(CR<sub>NBR</sub>)算法,运用当年新叶萌生期植被分布(NDVI)与海拔数据(ASTER GDEM)进行掩膜提取,分别获取了2014年和2018年西双版纳橡胶成林种植面积,基于ArcGIS 10.5平台分析了橡胶成林时空格局和种植面积增减变化。结果表明: ① 西双版纳橡胶林主要分布于南部水热条件较好、中低海拔的橡胶种植适宜区。景洪市的橡胶林面积最大,其次是勐腊县,勐海县最小。集中分布于景洪市的勐龙镇、允景洪街道和嘎洒镇;勐腊县的关累镇、勐棒镇和勐满镇;② 西双版纳及其下辖一市两县2014-2018年橡胶林种植面积总体呈现下降趋势,减幅为17.27%。其中,勐腊县的减幅最大为19.10%,勐海县减幅最小,仅2.70%。③ 橡胶林持续种植区主要在景洪市勐龙镇、嘎洒镇和景哈镇等,勐腊县的关累镇、勐棒镇和勐腊镇等;橡胶林种植增加区主要集中在景洪市勐龙镇、嘎洒镇和允景洪街道,勐腊县关累镇、勐腊镇和勐伴镇,勐海县打洛镇;橡胶林种植减少区主要在景洪市勐养镇、嘎洒镇和勐龙镇,勐腊县勐棒镇、勐腊镇和勐伴镇,本研究可为西双版纳橡胶林种植现状特征提供了新的认识。
LIU Y Y, XIAO C W, LI P, et al. Extraction of mature rubber plantations based on the CRNBR algorithm and spatio-temporal variations in Xishuangbanna[J]. J Geo Inf Sci, 2019, 21(3):467-474.
[37]
陈朝辉. 海南省三亚市的生态环境建设[J]. 热带地理, 2001, 21(3):202-206,222.CHEN
Abstract
三亚市位于海南岛最南部,具有得天独厚的生态环境优势.近20年来,生态环境建设虽取得初步成效,但问题也较突出,如林业尚存隐患,耕地锐减,水域受蚕食和局部环境恶化,城市绿化美化不足等.生态环境建设面临的任务主要是:合理布局城镇,建设具有经济-生态良性循环的城乡体系;完善林业生态体系建设,建成强有力的陆地生态支柱;保护好水体环境,搞好碧水工程建设;保护耕地、保证农业持续发展;整治环境,提高环境质量.为此必须采取相应措施.
( C /ZH. The construction of ecological environment in Sanya City of Hainan Province[J]. Trop Geogr, 2001, 21(3):202-206,222.DOI:10.3969/j.issn.1001-5221.2001.03.003.
三亚市位于海南岛最南部,具有得天独厚的生态环境优势.近20年来,生态环境建设虽取得初步成效,但问题也较突出,如林业尚存隐患,耕地锐减,水域受蚕食和局部环境恶化,城市绿化美化不足等.生态环境建设面临的任务主要是:合理布局城镇,建设具有经济-生态良性循环的城乡体系;完善林业生态体系建设,建成强有力的陆地生态支柱;保护好水体环境,搞好碧水工程建设;保护耕地、保证农业持续发展;整治环境,提高环境质量.为此必须采取相应措施.
[38]
李阳阳, 张军, 刘陈立, 等. 老挝北部5省橡胶林提取及时空扩张研究[J]. 林业科学研究, 2017, 30(5):709-717.
LI Y Y, ZHANG J, LIU C L, et al. Research on extraction and spatial-temporal expansion of rubber forest in five provinces of northern Laos based on multi-source remote sensing[J]. For Res, 2017, 30(5):709-717.DOI:10.13275/j.cnki.lykxyj.2017.05.002.
[39]
张戈, 王树东, 夏建新. 海南岛近30年天然林、橡胶林、浆纸林生态调节功能价值演变研究[J]. 中央民族大学学报(自然科学版), 2020, 29(3):28-35.
ZHANG G, WANG S D, XIA J X. Research on evolution characteristics of pattern and service function for natural,rubber and wood pulp forests in Hainan,China[J]. J Minzu Univ China (Nat Sci Ed), 2020, 29(3):28-35.DOI:10.3969/j.issn.1005-8036.2020.03.005.
[40]
王科. 关于云南西双版纳丘陵山地的植胶海拔高度问题[J]. 云南热作科技, 1982, 5(1):9-14.
WANG K. On the altitude of rubber planting in Xishuangbanna, Yunnan[J]. Yunnan Hot Crop Science and Technology, 1982, 5(1):9-14.DOI:10.16005/j.cnki.tast.1982.01.003.
[41]
封志明, 刘晓娜, 姜鲁光, 等. 中老缅交界地区橡胶种植的时空格局及其地形因素分析[J]. 地理学报, 2013, 68(10):1432-1446.
FENG Z M, LIU X N, JIANG L G, et al. Spatial-temporal analysis of rubber plantation and its relationship with topographical factors in the border region of China,Laos and Myanmar[J]. Acta Geogr Sin, 2013, 68(10):1432-1446.
[42]
贾凌, 都金康, 赵萍, 等. 基于TM的海南省土地利用/覆盖动态变化的遥感监测和分析[J]. 遥感信息, 2003, 18(1):22-25.
JIA L, DU J K, ZHAO P, et al. Land use dynamic monitoring in Hainan by TM data[J]. Remote Sens Inf, 2003, 18(1):22-25.DOI:10.3969/j.issn.1000-3177.2003.01.007.
[43]
黄金城. 中国海南岛热带森林可持续经营研究[D]. 北京: 中国林业科学研究院, 2006:142.
HUANG J C. Study on tropical forest sustainable management in Hainan Island, China[D]. Beijing: Chinese Academy of Forestry, 2006:142.
[44]
孔瀚正. 海南植胶区生态环境现状的比较研究[D]. 海口: 海南大学, 2014:58.
KONG H Z. Comparative study on ecological environment status of Hainan rubber planting area[D]. Haikou: Hainan University, 2014:58.
[45]
兰国玉, 吴志祥, 谢贵水. 海南橡胶林植物多样性特征[J]. 生物多样性, 2014, 22(5):658-666.
Abstract
为探讨人工林物种多样性维持机制及人为干扰后人工林群落的多样性恢复机制, 作者依据自然林的核心理论建立了一个1 ha的橡胶(Hevea brasiliensis)林固定样地, 通过研究近自然管理后样地内植物物种组成与分布来探讨近自然管理后橡胶林生物多样性的特征。结果表明: 近自然管理后橡胶林群落物种多样性较高, 1 ha样地内共有植物69科155属183种。在面积为4,000 m<sup>2</sup>、3,000 m<sup>2</sup>和2,000 m<sup>2</sup>时分别包含了样地内大约90%的种、属和科; 逻辑斯蒂模型拟合拟合种-面积曲线效果较好(R<sup>2</sup>=0.997), 证明了1 ha取样尺度可以满足橡胶林群落物种多样性研究的需要。多度-面积曲线和丰富度-面积曲线与随机分布模型有明显的差异, 表明橡胶林群落内个体数及物种分布呈非随机性。(4)对数级数模型和对数正态模型拟合橡胶林群落的种-多度分布都不理想, 相比而言后者拟合效果稍好。
LAN G Y, WU Z X, XIE G S. Characteristics of plant diversity in Hainan rubber forest[J]. Biodiversity Sci, 2014, 22(5):658-666.
PDF(3792 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/