CIRSPR: a unfulfilled journey from gene editing in ‘Blind box’ to ‘Precision targeting’ genome editing

SHI Jisen

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (6) : 12-14.

PDF(1433 KB)
PDF(1433 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2021, Vol. 45 ›› Issue (6) : 12-14. DOI: 10.12302/j.issn.1000-2006.202111027

CIRSPR: a unfulfilled journey from gene editing in ‘Blind box’ to ‘Precision targeting’ genome editing

Author information +
History +

Cite this article

Download Citations
SHI Jisen. CIRSPR: a unfulfilled journey from gene editing in ‘Blind box’ to ‘Precision targeting’ genome editing[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2021, 45(6): 12-14 https://doi.org/10.12302/j.issn.1000-2006.202111027

References

[1]
ZHOU X, JACOBS T B, XUE L J, et al. Exploiting SNPs for biallelic CRISPR mutations in the outcrossing woody perennial Populus reveals 4-coumarate:CoA ligase specificity and redundancy[J]. New Phytol, 2015, 208(2):298-301.DOI: 10.1111/nph.13470.
[2]
TSAI C J, XUE L J. CRISPRing into the woods[J]. GM Crops Food, 2015, 6(4):206-215.DOI: 10.1080/21645698.2015.1091553.
[3]
FAN D, LIU T, LI C, et al. Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation[J]. Sci Rep, 2015, 5:12217.DOI: 10.1038/srep12217.
[4]
侯静, 毛金燕, 尹佟明, 等. CRISPR/Cas技术在木本植物改良中的应用[J]. 南京林业大学学报(自然科学版), 2021, 45(6):24-30.
HOU J, MAO J Y, ZHAI H, et al. Application of CRISPR/Cas technique in woody plant improvement[J]. J Nanjing For Univ(Nat Sci Ed), 2021, 45(6):24-30.DOI: 10.12302/j.issn.1000-2006.202010017.
[5]
YE S, CHEN G, KOHNEN M V, et al. Robust CRISPR/Cas9 mediated genome editing and its application in manipulating plant height in the first generation of hexaploid Ma bamboo (Dendrocalamus latiflorus Munro)[J]. Plant Biotechnol J, 2020, 18(7):1501-1503.DOI: 10.1111/pbi.13320.
[6]
BAHARIAH B, MASANI M Y A, RASID O A, et al. Multiplex CRISPR/Cas9-mediated genome editing of the FAD2 gene in rice:a model genome editing system for oil palm[J]. J Genet Eng Biotechnol, 2021, 19(1):86.DOI: 10.1186/s43141-021-00185-4.
[7]
SATTAR M N, IQBAL Z, AL-KHAYRI J M. CRISPR-cas based precision breeding in date palm:future applications[M]//The Date Palm Genome. Cham:Springer International Publishing, 2021:169-199. DOI: 10.1007/978-3-030-73750-4_9.
[8]
YU J, ZHOU C G, LI D N, et al. A PtrLBD39-mediated transcriptional network regulates tension wood formation in Populus trichocarpa[J]. Plant Commun, 2021: 100250.DOI: 10.1016/j.xplc.2021.100250.
[9]
DE VRIES L, BROUCKAERT M, CHANOCA A, et al. CRISPR/Cas9 editing of CAFFEOYL SHIKIMATE ESTERASE 1 and 2 shows their importance and partial redundancy in lignification in Populus tremula × P.alba[J]. Plant Biotechnol J, 2021, 19(11):2221-2234.DOI: 10.1111/pbi.13651.
[10]
JIANG Y, TONG S, CHEN N, et al. The PalWRKY77 transcription factor negatively regulates salt tolerance and abscisic acid signaling in Populus[J]. Plant J, 2021, 105(5):1258-1273.DOI: 10.1111/tpj.15109.
[11]
HE H, XUE Q S, LU M Z, et al. The novel role of PagSAG101a in the regulation of secondary xylem formation in poplar[J]. J Integrat Plant Bio, 20210439.DOI: 10.1111/j.jipb.13195.
[12]
DAI X M, YANG X F, WANG C, et al. CRISPR/Cas9-mediated genome editing in Hevea brasiliensis[J]. Ind Crops Prod, 2021, 164:113418.DOI: 10.1016/j.indcrop.2021.113418.
[13]
MA W H, KANG X, LIU P, et al. The analysis of transcription factor CsHB1 effects on caffeine accumulation in tea callus through CRISPR/Cas9 mediated gene editing[J]. Process Biochem, 2021, 101:304-311.DOI: 10.1016/j.procbio.2021.01.001.
[14]
NANASATO Y, MIKAMI M, FUTAMURA N, et al. CRISPR/Cas9-mediated targeted mutagenesis in Japanese cedar (Cryptomeria japonica D.Don)[J]. Sci Rep, 2021, 11(1):1-12.DOI: 10.1038/s41598-021-95547-w.
[15]
POOVAIAH C, PHILLIPS L, GEDDES B, et al. Genome editing with CRISPR/Cas9 in Pinus radiata (d.don)[J]. BMC Plant Biol, 2021, 21(1):1-9.DOI: 10.1186/s12870-021-03143-x.
[16]
CUI Y, ZHAO J, ZHANG J F, et al. Efficient multi-sites genome editing and plant regeneration via somatic embryogenesis in Picea glauca[J]. Front Plant Sci, 2021, 12:751891.DOI: 10.3389/fpls.2021.751891.
[17]
王竹雯, 国艳娇, 李伟, 等. 基于CRISPR/Cas9 的毛果杨PtrHBI1基因功能解析[J]. 南京林业大学学报(自然科学版), 2021, 45(6):31-39.
WANG Z W, GUO Y J, LI S, et al., Functional analysis of PtrHBI1gene in Populus trichocarpa based on CRISPR/Cas9[J]. J. Nanjing For. Univ.(Nat. Sci. Ed.). 2021, 45(6):31-39.DOI: 10.12302/j.issn.1000-2000.20217030.
[18]
孙佳彤, 国艳娇, 李伟, 等. 基于CRISPR/Cas9的毛果杨bHLH106转录因子的功能研究[J]. 南京林业大学学报(自然科学版), 2021, 45(6)15-23.
SUN J T, GUO Y J., LI S., et al., A functional study of bHLH106 transcription factor based on CRISPR/Cas9 in Populus trichocarpa[J]. 2021, 45(6):15-23. DOI: 10.12302/j.issn.1000-2000.20217031.
[19]
CRISPENS C G. Effect of statolon on lactate dehydrogenase virus infection in mice[J]. Arch Gesamte Virusforsch, 1970, 31(3):191-195.DOI: 10.1007/bf01253751.
[20]
ISHINO Y, SHINAGAWA H, MAKINO K, et al. Nucleotide sequence of the iap gene,responsible for alkaline phosphatase isozyme conversion in Escherichia coli,and identification of the gene product[J]. J Bacteriol, 1987, 169(12):5429-5433.DOI: 10.1128/jb.169.12.5429-5433.1987.
[21]
KOZOVSKA Z, RAJCANIOVA S, MUNTEANU P, et al. CRISPR:History and perspectives to the future[J]. Biomed Pharmacother, 2021, 141:111917.DOI: 10.1016/j.biopha.2021.111917.
[22]
CONG L, RAN F A, COX D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121):819-823.DOI: 10.1126/science.1231143.
[23]
GOOTENBERG J S, ABUDAYYEH O O, KELLNER M J, et al. Multiplexed and portable nucleic acid detection platform with Cas13,Cas12a,and Csm6[J]. Science, 2018, 360(6387):439-444.DOI: 10.1126/science.aaq0179.
[24]
WU Z, ZHANG Y, YU H, et al. Programmed genome editing by a miniature CRISPR-Cas12f nuclease[J]. Nat Chem Biol, 2021, 17(11):1132-1138.DOI: 10.1038/s41589-021-00868-6.
[25]
KOCH L. CRISPR systems go mini[J]. Nat Rev Genet, 2021, 22(11):690.DOI: 10.1038/s41576-021-00419-8.
[26]
AWAN M J A, AMIN I, MANSOOR S. Mini CRISPR-Cas12f1:a new genome editing tool[J]. Trends Plant Sci, 2021 DOI: 10.1016/j.tplants.2021.11.002.
[27]
ALTAE-TRAN H, KANNAN S, ZHANG F, et al. The widespread IS200/IS605 transposon family encodes diverse programmable RNA-guided endonucleases[J]. Science, 2021, 374(6563):57-65.DOI: 10.1126/science.abj6856.

RIGHTS & PERMISSIONS

Copyright reserved © 2021.
PDF(1433 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/