Family variation and selection of growth traits of eight-year-old Cupressus funebris in two sites

WANG Wenyue, ZHANG Zhen, JIN Guoqing, SUN Linshan, QIU Yongbin, ZHOU Zhichun, YANG Tao

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (2) : 42-48.

PDF(1655 KB)
PDF(1655 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (2) : 42-48. DOI: 10.12302/j.issn.1000-2006.202111032

Family variation and selection of growth traits of eight-year-old Cupressus funebris in two sites

Author information +
History +

Abstract

【Objective】 The aims of this research is to reveal the genetic variation rules of Cupressus funebris growth traits, select the most suitable germplasm for the advanced genetic improvement, and select the most suitable families for regional promotion. 【Method】 For this study, eight-year-old half-sib families of C. funebris grown in the KH and TZS experimental sites were used, the genetic variations of growth traits were analyzed, and the breeding value and heritability were estimated. 【Result】 The genetic variation coefficients of C. funebris growth traits (tree height, diameter at breast height (DBH) and volume) ranged from 3.08%-13.93%, and the variation of volume was the greatest. The tree height, diameter at breast height, and volume of progeny families varied significantly among locations. The individual tree volume at TZS was 315.79% higher than that at KH, and the interaction between families and locations was significant. The tree height, DBH and volume have significant effects on the family. The range of heritability in the KH and TZS test sites was 0.42-0.61 and 0.58-0.74, respectively. Six complementary families were selected from the KH and TZS test sites based on the standard of breeding value per plant volume greater than 10% and 45% of CK, respectively, and the actual gains were 33.51% and 67.95%, respectively. Using the independent elimination method, 17 and 12 individual plus trees were screened at the KH and TZS sites respectively, and the genetic gains of volume were 41.38% and 40.92%, respectively. 【Conclusion】 The growth traits of the eight-year-old half-sib families of C. funebris have great potential for the genetic improvement, but the interaction effect between the family and the environment was significant. The genetic evaluation of the half-sib families was helpful for the re-selection of the parents for the establishment of the seed orchards and the thinning of the existing seed orchards. At the same time, the selected optimum germplasm can be used as breeding parents for high-order genetic improvement.

Key words

Cupressus funebris / complementary family / genetic variation / genetic gain

Cite this article

Download Citations
WANG Wenyue , ZHANG Zhen , JIN Guoqing , et al . Family variation and selection of growth traits of eight-year-old Cupressus funebris in two sites[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2023, 47(2): 42-48 https://doi.org/10.12302/j.issn.1000-2006.202111032

References

[1]
王云鹏, 张蕊, 周志春, 等. 10年生木荷生长和材性性状家系变异及选择[J]. 南京林业大学学报(自然科学版), 2020, 44(5):85-92.
WANG Y P, ZHANG R, ZHOU Z C, et al. A variation and selection of growth and wood traits for 10-year-old Schima superba[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(5):85-92.DOI: 10.3969/j.issn.1000-2006.202003086.
[2]
孙晓梅, 杨秀艳. 林木育种值预测方法的应用与分析[J]. 北京林业大学学报, 2011, 33(2):65-71.
SUN X M, YANG X Y. Applications and analysis of methods for breeding value prediction in forest trees[J]. J Beijing For Univ, 2011, 33(2):65-71.DOI: 10.13332/j.1000-1522.2011.02.020.
[3]
YUAN C Z, ZHANG Z, JIN G Q, et al. Genetic parameters and genotype by environment interactions influencing growth and productivity in Masson pine in east and central China[J]. For Ecol Manag, 2021, 487:118991.DOI: 10.1016/j.foreco.2021.118991.
[4]
徐德志. 火炬松半同胞家系子代测定及分析[D]. 南京: 南京林业大学, 2010.
XU D Z. Progeny test and analysis of half-sib families of loblolly pine[D]. Nanjing: Nanjing Forestry University, 2010.
[5]
解懿妮, 刘青华, 蔡燕灵, 等. 5年生马尾松生长性状3地点家系变异及评价[J]. 林业科学研究, 2020, 33(5):1-12.
XIE Y N, LIU Q H, CAI Y L, et al. Family variation and evaluation of growth traits of 5-year-old Pinus massoniana in three sites[J]. For Res, 2020, 33(5):1-12.DOI: 10.13275/j.cnki.lykxyj.2020.05.001.
[6]
陈坦, 张振, 楚秀丽, 等. 马尾松二代无性系种子园的花期同步性[J]. 林业科学, 2019, 55(1):146-156.
CHEN T, ZHANG Z, CHU X L, et al. The flowering synchronicity of second-generation clonal seed orchard of Masson pine (Pinus massoniana)[J]. Sci Silvae Sin, 2019, 55(1):146-156.DOI: 10.11707/j.1001-7488.20190117.
[7]
REN J S, JI X Y, WANG C H, et al. Variation and genetic parameters of leaf morphological traits of eight families from Populus simonii × P.nigra[J]. Forests, 2020, 11(12):1319.DOI: 10.3390/f11121319.
[8]
肖遥. 南方红豆杉种源和家系生长遗传变异[D]. 南京: 南京林业大学, 2016.
XIAO Y. Genetic variation of provenances and families on Taxus wallichiana var. mairei[D]. Nanjing: Nanjing Forestry University, 2016.
[9]
RAYMOND C A. Genotype by environment interactions for Pinus radiata in New South Wales,Australia[J]. Tree Genet Genomes, 2011, 7(4):819-833.DOI: 10.1007/s11295-011-0376-4.
[10]
CHEN Z Q, KARLSSON B, WU H X. Patterns of additive genotype-by-environment interaction in tree height of Norway spruce in southern and central Sweden[J]. Tree Genet Genomes, 2017, 13(1):25.DOI: 10.1007/s11295-017-1103-6.
[11]
王瑞文, 郭赟, 林虎, 等. 柏木研究进展及展望[J]. 湖北林业科技, 2021, 50(4):60-63.
WANG R W, GUO Y, LIN H, et al. Research progress and prospect of Cupressus funebris[J]. Hubei For Sci Technol, 2021, 50(4):60-63.DOI: 10.3969/j.issn.1004-3020.2021.04.014.
[12]
郑一, 张振, 金国庆, 等. 低肥力土壤施用氮磷钾肥影响柏木家系根系发育和养分吸收对钙肥的响应[J]. 植物营养与肥料学报, 2020, 26(8):1501-1512.
ZHENG Y, ZHANG Z, JIN G Q, et al. Effects of NPK fertilization on the response of root growth and nutrient absorption of seedlings of Cypress funebris to calcium addition in low fertility soil[J]. J Plant Nutr Fertil, 2020, 26(8):1501-1512.DOI: 10.11674/zwyf.19468.
[13]
洪舟, 杨曾奖, 张宁南, 等. 越南黄花梨种源家系生长遗传变异及早期选择[J]. 南京林业大学学报(自然科学版), 2020, 44(1):25-30.
HONG Z, YANG Z J, ZHANG N N, et al. Genetic variation and juvenile selection of growth traits of Dalbergia tonkinensis Prain[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(1):25-30.DOI: 10.3969/j.issn.1000-2006.201906028.
[14]
尹海锋, 苏宇, 郭茂金, 等. 目标树经营初期对柏木人工林土壤线虫群落的影响[J]. 生态学报, 2019, 39(10):3607-3621.
YIN H F, SU Y, GUO M J, et al. Effects of early crop-tree release on soil nematode communities in a Cupressus funebris plantation[J]. Acta Ecol Sin, 2019, 39(10):3607-3621.DOI: 10.5846/stxb201806101296.
[15]
杨育林, 李贤伟, 周义贵, 等. 林窗式疏伐对川中丘陵区柏木人工林生长和植物多样性的影响[J]. 应用与环境生物学报, 2014, 20(6):971-977.
YANG Y L, LI X W, ZHOU Y G, et al. Effects of gap thinning on growth and diversity of a cypress plantation in the hilly region of central Sichuan[J]. Chin J Appl Environ Biol, 2014, 20(6):971-977.DOI: 10.3724/SP.J.1145.2014.05004.
[16]
李新国, 朱之悌. 用地点间遗传相关研究树木基因型×环境互作[J]. 北京林业大学学报, 1992, 14(S3):85-91.
LI X G, ZHU Z T. Introducing between-site genetic correlation into studies on genotype environment interaction in forest tree[J]. J Beijing For Univ, 1992, 14(S3):85-91.
[17]
WHITE T L, ADAMS W T, NEALE D B. Forest genetics[M]. UK: CABI, 2007.DOI: 10.1079/9781845932855.0000.
[18]
林元震. 林木基因型与环境互作的研究方法及其应用[J]. 林业科学, 2019, 55(5):142-151.
LIN Y Z. Research methodologies for genotype by environment interactions in forest trees and their applications[J]. Sci Silvae Sin, 2019, 55(5):142-151.DOI: 10.11707/j.1001-7488.20190516.
[19]
严艳兵, 潘惠新. 美洲黑杨无性系木材材性与生长性状遗传相关分析[J]. 中南林业科技大学学报, 2021, 41(5):74-81.
YAN Y B, PAN H X. Genetic correlation analysis of wood property and growth traits in Populus deltoides clones[J]. J Central South Univ For & Technol, 2021, 41(5):74-81.DOI: 10.14067/j.cnki.1673-923x.2021.05.009.
[20]
洪永辉, 林文奖, 黄以法. 12年生马尾松种子园半同胞家系生长性状变异分析与优良家系选择[J]. 南京林业大学学报(自然科学版), 2010, 34(4):26-30.
HONG Y H, LIN W J, HUANG Y F. Selection of excellent families and analysis on growth variation for the 12-year-old half-sib family of seed orchard of Pinus massoniana[J]. J Nanjing For Univ (Nat Sci Ed), 2010, 34(4):26-30.DOI: 10.3969/j.issn.1000-2006.2010.04.006.
[21]
金国庆, 张振, 余启新, 等. 马尾松2个世代种子园6年生家系生长的遗传变异与增益比较[J]. 林业科学, 2019, 55(7):57-67.
JIN G Q, ZHANG Z, YU Q X, et al. Comparisons of genetic variation and gains of 6-year-old families from first-and second-generation seed orchards of Pinus massoniana[J]. Sci Silvae Sin, 2019, 55(7):57-67.DOI: 10.11707/j.1001-7488.20190706.
[22]
刘晓婷, 魏嘉彤, 吴培莉, 等. 吉林省天然红松居群表型变异分析及多样性研究[J]. 北京林业大学学报, 2021, 43(4):25-34.
LIU X T, WEI J T, WU P L, et al. Phenotypic variation and diversity of natural Pinus koraiensis populations in Jilin Province of Northern China[J]. J Beijing For Univ, 2021, 43(4):25-34.DOI: 10.12171/j.1000-1522.20200250.
[23]
周琳. 柏木优树子代遗传分析及优良家系评选[D]. 雅安: 四川农业大学, 2017.
ZHOU L. Genetic analysis Y and superior family selection about Cupressus funebris progen[D]. Ya’an: Sichuan Agricultural University, 2017.
[24]
刘宇, 徐焕文, 张广波, 等. 白桦半同胞子代多点生长性状测定及优良家系选择[J]. 北京林业大学学报, 2017, 39(3):7-15.
LIU Y, XU H W, ZHANG G B, et al. Multipoint growth trait test of half-sibling offspring and excellent family selection of Betula platyphylla[J]. J Beijing For Univ, 2017, 39(3):7-15.DOI: 10.13332/j.1000-1522.20160154.
[25]
曾德贤, 朱仁刚, 范林元, 等. 墨西哥柏52个优树自由授粉子代遗传测定[J]. 西南林学院学报, 2006, 26(4):22-26.
ZENG D X, ZHU R G, FAN L Y, et al. Progeny test on 52 openly-pollinated families of Cupressus lusitanica[J]. J Southwest For Coll, 2006, 26(4):22-26.DOI: 10.3969/j.issn.2095-1914.2006.04.006.
[26]
NOCETTI M, DELLA ROCCA G, BERTI S, et al. Genetic growth parameters and morphological traits of canker-resistant cypress clones selected for timber production[J]. Tree Genet Genomes, 2015, 11(4):73.DOI: 10.1007/s11295-015-0900-z.
[27]
袁承志, 陈坦, 张振, 等. 不同养分环境下钙添加对柏木家系苗木生长和根系发育的影响[J]. 应用与环境生物学报, 2020, 26(5):1161-1168.
YUAN C Z, CHEN T, ZHANG Z, et al. Effects of calcium addition on growth and root development of Cupressus funebris families in different nutrient conditions[J]. Chin J Appl Environ Biol, 2020, 26(5):1161-1168.DOI: 10.19675/j.cnki.1006-687x.2019.09048.
[28]
张华丽, 张金凤, 王军辉, 等. 针叶树补光育苗技术研究进展[J]. 西北林学院学报, 2005, 20(1):107-111.
ZHANG H L, ZHANG J F, WANG J H, et al. Advances in technology of growing seedlings by supplemental lighting in conifers[J]. J Northwest For Univ, 2005, 20(1):107-111.DOI: 10.3969/j.issn.1001-7461.2005.01.028.
[29]
IVKOVIC M, GAPARE W, WU H, et al. Influence of cambial age and climate on ring width and wood density in Pinus radiata families[J]. Ann For Sci, 2013, 70(5):525-534.DOI: 10.1007/s13595-013-0290-z.
[30]
YU Q B, PULKKINEN P. Genotype-environment interaction and stability in growth of aspen hybrid clones[J]. For Ecol Manag, 2003, 173(1/2/3):25-35.DOI: 10.1016/S0378-1127(1)00819-2.
PDF(1655 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/