Effects of infrastructure and stadium construction on wildlife in Yanqing competition area of Beijing 2022 Olympic Winter Games

XIA Fan, BAO Weidong, GAI Lixin, JU Longfei, HUANG Wenhua, JIANG Jian, HA Xibo

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (1) : 219-225.

PDF(6882 KB)
PDF(6882 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (1) : 219-225. DOI: 10.12302/j.issn.1000-2006.202111039

Effects of infrastructure and stadium construction on wildlife in Yanqing competition area of Beijing 2022 Olympic Winter Games

Author information +
History +

Abstract

【Objective】 Exploring the impact of large-scale venue construction on wildlife will help formulate targeted protection policies and measures for implementing the Green Olympics and improving the efficiency of biodiversity conservation.【Method】Wildlife richness and activity rhythms were monitored using the camera trapping method from April 2019 to March 2020 and compared with previous data from 2013 to analyze the effects of infrastructure construction on wildlife in the Yanqing competition area during the 2022 Beijing Winter Olympic Games. 【Result】 A total of 4 193 camera trapping days were collected with 5 961 effective photos that captured 13 species of mammals and 25 species of birds belonging to nine orders and 23 families. The number of mammals decreased by three species compared to the recordings in 2013; raccoon dog (Nyctereutes procyonoides), red fox (Vulpes vulpes), and Tolai hare (Lepus tolai) were not detected, and the number of bird species decreased by 22. The relative abundance index of leopard cat (Prionailurus bengalensis)(Z=-2.981, P<0.01), Asian badger(Meles leucurus)(Z=-2.578, P<0.05), hog badger(Arctonyx collaris)(Z=2.197, P<0.05), and wild boar(Sus scrofa)(Z=-2.310, P<0.05)were significantly different for the two surveys. An analysis of monthly activity rhythms showed that the activity of leopards and Asian badgers peaked earlier due to construction, while the activity peaks of hog badgers and rock squirrels(Sciurotamias davidianus)decreased, resulting in activity patterns that remained mostly uniform throughout the year. Furthermore, the activity peak of the wild boar was prolonged. There were significant differences(P<0.05)in the daily activity rhythm of the five mammals before and after construction. Leopards, Asian badgers, and hog badgers showed less daytime activity and more night activity, while wild boar showed the opposite trend, and the rock squirrel showed less and more balanced daytime activity. 【Conclusion】 Construction work had a certain impact on wild animals, with a decrease in species diversity and changes in activity rhythm and behavioral patterns. Meanwhile, the results also showed that existing protection measures played a positive role in reducing construction interference on wildlife. This study provides scientific and technological support for practicing the Green Olympics and carrying out ecological and environmental protection during the Beijing 2022 Olympic Winter Games.

Key words

wildlife monitoring / Beijing 2022 Olympic Winter Games / construction interference / relative abundance / activity rhythm

Cite this article

Download Citations
XIA Fan , BAO Weidong , GAI Lixin , et al . Effects of infrastructure and stadium construction on wildlife in Yanqing competition area of Beijing 2022 Olympic Winter Games[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2023, 47(1): 219-225 https://doi.org/10.12302/j.issn.1000-2006.202111039

References

[1]
蒋志刚. 野生动物的价值与生态服务功能[J]. 生态学报, 2001, 21(11):1909-1917.
JIANG Z G. Values and ecological service functions of wildlife[J]. Acta Ecol Sin, 2001, 21(11):1909-1917.DOI:10.3321/j.issn:1000-0933.2001.11.022.
[2]
BERNARDO-MADRID R, CALATAYUD J, GONZÁLEZ-SUÁREZ M, et al. Human activity is altering the world’s zoogeographical regions[J]. Ecol Lett, 2019, 22(8):1297-1305.DOI:10.1111/ele.13321.
[3]
TORRES-ROMERO E J, GIORDANO A J, CEBALLOS G, et al. Reducing the sixth mass extinction:understanding the value of human-altered landscapes to the conservation of the world’s largest terrestrial mammals[J]. Biol Conserv, 2020, 249:108706.DOI:10.1016/j.biocon.2020.108706.
[4]
GAYNOR K M, HOJNOWSKI C E, CARTER N H, et al. The influence of human disturbance on wildlife nocturnality[J]. Science, 2018, 360(6394):1232-1235.DOI:10.1126/science.aar7121.
Rapid expansion of human activity has driven well-documented shifts in the spatial distribution of wildlife, but the cumulative effect of human disturbance on the temporal dynamics of animals has not been quantified. We examined anthropogenic effects on mammal diel activity patterns, conducting a meta-analysis of 76 studies of 62 species from six continents. Our global study revealed a strong effect of humans on daily patterns of wildlife activity. Animals increased their nocturnality by an average factor of 1.36 in response to human disturbance. This finding was consistent across continents, habitats, taxa, and human activities. As the global human footprint expands, temporal avoidance of humans may facilitate human-wildlife coexistence. However, such responses can result in marked shifts away from natural patterns of activity, with consequences for fitness, population persistence, community interactions, and evolution.Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
[5]
张跃, 雷开明, 张语克, 等. 植被、海拔、人为干扰对大中型野生动物分布的影响:以九寨沟自然保护区为例[J]. 生态学报, 2012, 32(13):4228-4235.
ZHANG Y, LEI K M, ZHANG Y K, et al. Effects of vegetation,elevation and human disturbance on the distribution of large-and medium-sized wildlife:a case study in Jiu-zhaigou Nature Reserve[J]. Acta Ecol Sin, 2012, 32(13):4228-4235.DOI:10.5846/stxb201106090768.
[6]
陈立军, 肖文宏, 肖治术. 物种相对多度指数在红外相机数据分析中的应用及局限[J]. 生物多样性, 2019, 27(3):243-248.
Abstract
多度是衡量物种种群数量的参数之一, 多度的动态及其影响因素是种群生态学研究的经典问题。物种相对多度指数(relative abundance index, RAI)作为一种简单、便利的指标, 广泛应用于动物本底清查中。但RAI易受物种自身特征、探测率和环境因素的影响, 需要结合其他物种数量分析方法, 以验证其与种群大小的相关性。随着红外相机技术在野生动物调查中的广泛应用, 用红外相机数据估计动物种群数量的研究越来越多。目前, 基于红外相机数据计算RAI的方法有多种, 不同计算方法和应用范围存在差异, 亟需对现有方法和应用进行梳理。本文综述了根据红外相机数据计算物种相对多度的4种主要方法: (1)拍摄一张有效照片所需要的天数; (2)基于单位调查强度的物种拍摄率; (3)每个位点每天的物种拍摄率; (4)某一物种的照片数占所有物种的比例。总结了我国野生动物监测调查中采用红外相机方法计算RAI的应用现状。国内的研究主要采用第2种和第4种计算方法, 其中约72.5%的研究论文应用第2种计算方法, 而第4种方法一般适用于群落中的物种组成比较。我们建议根据红外相机数据计算RAI时尽量使用第2种计算方法, 这有助于研究或管理人员对不同研究中的物种RAI进行比较分析。
CHEN L J, XIAO W H, XIAO Z S. Limitations of relative abundance indices calculated from camera-trapping data[J]. Biodivers Sci, 2019, 27(3):243-248.DOI:10.17520/biods.2018327.
[7]
BLOWES S A, CHASE J M, DI FRANCO A, et al. Mediterranean marine protected areas have higher biodiversity via increased evenness,not abundance[J]. J Appl Ecol, 2020, 57(3):578-589.DOI:10.1111/1365-2664.13549.
[8]
MORI E, CICERO M, LOVARI S, et al. Occupancy and activity rhythms of the Siberian roe deer[J]. Biologia, 2021, 76(10):2991-2999.DOI:10.1007/s11756-021-00790-1.
[9]
刘佳, 李生强, 汪国海, 等. 喀斯特生境中白鹇的活动节律、时间分配及集群行为[J]. 广西师范大学学报(自然科学版), 2019, 37(3):156-165.
LIU J, LI S Q, WANG G H, et al. Activity rhythm,time budgets and flocking behavior of silver pheasant(Lophura nycthemera) in the Karst habitat[J]. J Guangxi Norm Univ (Nat Sci Ed), 2019, 37(3):156-165.DOI:10.16088/j.issn.1001-6600.2019.03.018.
[10]
穆君, 王娇娇, 张雷, 等. 贵州习水国家级自然保护区红外相机鸟兽监测及活动节律分析[J]. 生物多样性, 2019, 27(6):683-688.
Abstract
2015年7月至2017年11月, 我们利用红外相机对贵州习水国家级自然保护区的鸟类及兽类进行监测。结果表明: (1)共记录到鸟类5目20科56种、兽类5目12科28种, 其中国家I级重点保护动物有林麝(Moschus berezovskii), 国家II级重点保护动物有红腹角雉(Tragopan temminckii)、白鹇(Lophura nycthemera)、鹰雕(Nisaetus nipalensis)、中华鬣羚(Capricornis milneedwardsii)等13种。鹰雕为贵州省新记录, 白腹锦鸡(Chrysolophus amherstiae)、白眉鸫(Turdus obscurus)等10种为保护区新记录。(2)从中国动物地理区划来看, 保护区物种以东洋型(41.67%)为主, 南中国型(29.76%)次之; 东北型(2.38%)最少。(3)区内4种主要兽类中, 毛冠鹿(Elaphodus cephalophus)主要在傍晚活动; 赤腹松鼠(Callosciurus erythraeus)日活动节律呈季节性变化, 春秋季集中在午间活动, 夏季集中在早上活动, 冬季则呈现活动双峰, 分别是在8:00-10:00及16:00-18:00之间; 豪猪(Hystrix brachyura)主要在20:00-24:00之间活动; 藏酋猴(Macaca thibetana)秋冬季集中在14:00-16:00活动, 而春季则在早上10:00-12:00之间较活跃, 夏季也有2个活动高峰, 分别是在12:00-14:00及16:00-18:00。2种主要雉类的活动节律明显不同, 红腹锦鸡(Chrysolophus pictus)春夏季都较为集中在午间活动, 而秋季主要在6:00-8:00之间; 红腹角雉春夏两季活动高峰在早上, 秋冬季则是在14:00-16:00之间活动频繁。本监测结果有利于进一步了解和促进此区域的生物多样性及其保护。
MU J, WANG J J, ZHANG L, et al. Field monitoring using infrared cameras and activity rhythm analysis on mammals and birds in Xishui National Nature Reserve,Guizhou,China[J]. Biodivers Sci, 2019, 27(6):683-688.DOI:10.17520/biods.2018347.
[11]
张源笙, 蒋健, 蒋万杰, 等. 北京松山国家级自然保护区兽类活动节律初步研究[J]. 四川动物, 2017, 36(4):460-467.
ZHANG Y S, JIANG J, JIANG W J, et al. Activity patterns of mammals in Beijing Songshan National Nature Reserve[J]. Sichuan J Zool, 2017, 36(4):460-467.DOI:10.11984/j.issn.1000-7083.20170108.
[12]
尚玉昌. 动物的行为节律[J]. 生物学通报, 2006, 41(10):8-10.
SHANG Y C. Behavioral rhythms in animals[J]. Microbiol China, 2006, 41(10):8-10.DOI:10.3969/j.issn.0006-3193.2006.10.004.
[13]
段利娟. 王朗自然保护区大熊猫及其同域物种活动节律及栖息地利用研究[D]. 北京: 北京林业大学, 2014.
DUAN L J. Study on activity and habitat use of giant Panda and its sympatric species in Wanglang Nature Reserve[D]. Beijing: Beijing Forestry University, 2014.
[14]
崔海鸥, 单宏臣. 北京松山国家级自然保护区脊椎动物区系初报[J]. 四川动物, 2006, 25(4):776-778.
CUI H O, SHAN H C. Preliminary report on vertebrate fauna in Songshan National Nature Reserve,Beijing[J]. Sichuan J Zool, 2006, 25(4):776-778.DOI:10.3969/j.issn.1000-7083.2006.04.021.
[15]
WESTERMAN M. Are the games really green?[J]. E Environ Mag, 2010, 21(1):14-16.
[16]
PAQUETTE J, STEVENS J, MALLEN C. The interpretation of environmental sustainability by the International Olympic Committee and Organizing Committees of the Olympic Games from 1994 to 2008[J]. Sport Soc, 2011, 14(3):355-369.DOI:10.1080/17430437.2011.557272.
[17]
徐宇华, 林显鹏. 冬季奥运会可持续发展管理研究:国际经验及对我国筹备2022年冬奥会的启示[J]. 北京体育大学学报, 2016, 39(1):13-19.
XU Y H, LIN X P. Sustainable development management of winter olympics:international experience and its revelation to China’s preparation for 2022 Winter Olympics[J]. J Beijing Sport Univ, 2016, 39(1):13-19.DOI:10.19582/j.cnki.11-3785/g8.2016.01.003.
[18]
刘芳, 李迪强, 吴记贵. 利用红外相机调查北京松山国家级自然保护区的野生动物物种[J]. 生态学报, 2012, 32(3):730-739.
LIU F, LI D Q, WU J G. Using infra-red cameras to survey wildlife in Beijing Songshan National Nature Reserve[J]. Acta Ecol Sin, 2012, 32(3):730-739.DOI:10.5846/stxb201109071312.
[19]
杜连海, 王小平, 陈峻崎, 等. 北京松山自然保护区综合科学考察报告[M]. 北京: 中国林业出版社, 2012.
DU L H, WANG X P, CHEN J Q, et al. Comprehensive scientific investigation report of Beijing Songshan Nature Reserve[M]. Beijing: China Forestry Publishing House, 2012.
[20]
范雅倩, 安菁, 梁晨. 北京市松山国家级自然保护区典型植被群落的土壤微生物群落结构特征[J]. 北方园艺, 2021(1):81-86.
FAN Y Q, AN J, LIANG C. Soil microbial structure characte-ristics of typical vegetation communities in Beijing City Songshan National Nature Reserve[J]. North Hortic, 2021(1):81-86.DOI:10.11937/bfyy.20200341.
[21]
PERIS A, CLOSA-SEBASTIÀ F, MARCO I, et al. Baiting improves wild boar population size estimates by camera trapping[J]. Mamm Biol, 2019, 98:28-35.DOI:10.1016/j.mambio.2019.07.005.
In the last decade, camera trapping has become a widespread technique for wildlife monitoring. Although baits or attractants are commonly used to increase the likelihood of encounter, this practice has been criticised because of the potential biases in the population estimations based on these records obtained by mark-recapture or mark-resight methods, and especially in relative abundance indices (RAI). For two consecutive years, we evaluated the impact of baiting on wild boar (Sus scrofa) population estimates in a protected area of northeast Spain. In particular, we compared the number of boars per independent events (the group size), the estimated population size and RAI between periods with and without baiting. Baiting increased mean group size estimation and the likelihood of an encounter leading to more precise wild boar population estimates. The RAI values both at baited and unbaited campaigns correlated significantly with mark-resight abundance estimates, suggesting that these indices could be used to evaluate the boar population changes. (C) 2019 Deutsche Gesellschaft fur Saugetierkunde. Published by Elsevier GmbH.
[22]
AZLAN J M, SHARMA D S K. The diversity and activity patterns of wild felids in a secondary forest in Peninsular Malaysia[J]. Oryx, 2006, 40(1):36-41.DOI:10.1017/s0030605306000147.
[23]
肖治术. 红外相机技术在我国自然保护地野生动物清查与评估中的应用[J]. 生物多样性, 2019, 27(3):235-236.
XIAO Z S. Application of camera trapping to species inventory and assessment of wild animals across China’s protected areas[J]. Biodivers Sci, 2019, 27(3):235-236.DOI:10.17520/biods.2018329.
[24]
RIDOUT M S, LINKIE M. Estimating overlap of daily activity patterns from camera trap data[J]. J Agric Biol Environ Stat, 2009, 14(3):322-337.DOI:10.1198/jabes.2009.08038.
[25]
MEREDITH M, RIDOUT M. Overlap:estimates of coefficient of overlapping for animal activity patterns.2014[CP/OL]. https://rdrr.io/cran/overlap/.
[26]
ROWCLIFFE J M, KAYS R, KRANSTAUBER B, et al. Quantifying levels of animal activity using camera trap data[J]. Methods Ecol Evol, 2014, 5(11):1170-1179.DOI:10.1111/2041-210X.12278.
[27]
蒋志刚, 江建平, 王跃招, 等. 中国脊椎动物红色名录[J]. 生物多样性, 2016, 24(5):500-551.
JIANG Z G, JIANG J P, WANG Y Z, et al. Red list of China’s vertebrates[J]. Biodivers Sci, 2016, 24(5):500-551.DOI:10.17520/biods.2016076.
[28]
PADALINO B, BARRASSO R, TULLIO D, et al. Protection of animals during transport:analysis of the infringements reported from 2009 to 2013 during on-road inspections in Italy[J]. Animals (Basel), 2020, 10(2):356.DOI:10.3390/ani10020356.
[29]
范庭兴. 高速公路对大熊猫栖息地的影响及保护措施[J]. 公路, 2020, 65(1):265-274.
FAN T X. Environmental impact of highway on habitat of panda and protective measures[J]. Highway, 2020, 65(1):265-274.
[30]
田泽薇, 张云伟, 陈瑶. 基于双路径网络的四足动物运动参数提取方法[J]. 江苏农业学报, 2022, 38(2):403-413.
TIAN Z W, ZHANG Y W, CHEN Y. Extraction of quadruped motion parameters based on dual path network[J]. Jiangsu J Agr Sci, 2022, 38(2):403-413.DOI:10.3969/j.issn.1000-4440.2022.02.014.
PDF(6882 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/