JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (4): 209-218.doi: 10.12302/j.issn.1000-2006.202111045
Previous Articles Next Articles
YANG Shilong1(), JIANG Guobin2, XU Li3,*(
), SUN Lu3, JIA Yunxuan3, WU Yu3
Received:
2021-11-28
Revised:
2022-02-21
Online:
2023-07-30
Published:
2023-07-20
CLC Number:
YANG Shilong, JIANG Guobin, XU Li, SUN Lu, JIA Yunxuan, WU Yu. Fluorescent properties and application for recognizing copper ions based on kaempferol and kaempferol-cyclodextrin inclusion[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(4): 209-218.
Table 1
The chemical shifts of Kae and Kae-CD"
δKae | δKae-CD | Δδ | δKae | δKae-CD | Δδ |
---|---|---|---|---|---|
12.479 | 12.468 | -0.110 | 6.932 | 6.928 | -0.004 |
10.768 | 10.119 | -0.649 | 6.917 | 6.913 | -0.004 |
10.097 | 9.433 | -0.664 | 6.438 | 6.431 | -0.007 |
9.379 | — | — | 6.435 | 6.428 | -0.007 |
8.050 | 8.044 | -0.006 | 6.191 | 6.184 | -0.007 |
8.035 | 8.029 | -0.006 | 6.188 | 6.181 | -0.007 |
Fig. 7
Fluorescence titration spectra and standard curves of Kae and Kae-CD for detecting copper ions Curves 1-27 in figure a show Cu2+ concentrations of (0,0.1,0.5,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,20.0,30.0,40.0,50.0,70.0,90.0) × 10-7 mol/L.Curves 1-23 in figure b show Cu2+ concentrations of (0,0.5,1.0,3.0,5.0,7.0,10.0,13.0,15.0,17.0,20.0,23.0,25.0,27.0,30.0,33.0,35.0,37.0,40.0,43.0,45.0,47.0,50.0) × 10-7 mol/L。"
Table 2
The standard curves of Kae and Kae-CD acting as fluorescent probes to detect copper ions"
探针 probe | 标准曲线 standard curve | 线性范围/ (mol·L-1) linearity range | 检测限/ (mol·L-1) limit of detection | R2 |
---|---|---|---|---|
Kae | y= -10.61 x + 225.80 | 1.0 × 10-8~ 1.7 × 10-6 | 4.2× 10-9 | 0.998 |
Kae-CD | y = -8.54 x + 708.55 | 5.0× 10-8~ 5.0 × 10-6 | 1.5 × 10-8 | 0.997 |
Table 3
Comparison of determination for copper ions in water samples using different methods"
水样来源 source of water | ICP-MS (IPC-OES)/ (×10-8 mol·L-1) | Kae(Kae-CD)/ (×10-8 mol·L-1) | 相对标准 偏差/% RSD | 回收率/ % recovery |
---|---|---|---|---|
卤汀河 Luting River | 3.664 | 3.632±0.104 | 2.86 | 99.13 |
东城河 Dongcheng River | 5.768 | 5.815±0.085 | 1.47 | 100.81 |
护城河 Moats | 7.321 | 7.342±0.135 | 1.84 | 100.29 |
玄武湖 Xuanwu Lake | 7.873 | 7.807±0.067 | 0.86 | 99.16 |
秦淮河 Qinhuai River | 10.347 | 10.284±0.065 | 0.63 | 99.39 |
长江 Yangtze River | 12.556 | 12.592±0.160 | 1.27 | 100.29 |
沭河 Shuhe River | 6.398 | 6.144±0.063 | 1.03 | 96.04 |
绣针河 Xiuzhen River | 3.512 | 3.742±0.036 | 0.95 | 106.55 |
大运河 Grand Canal | 4.439 | 4.320±0.063 | 1.47 | 97.32 |
白马湖 Baima Lake | 6.928 | 6.750±0.043 | 0.64 | 97.43 |
[1] | 张明光, 李明新, 杨益琴, 等. 诺蒎酮基喹唑啉-2-胺型铜离子荧光探针的合成及其应用研究[J]. 有机化学, 2021, 41(3):1168-1176. |
ZHANG M G, LI M X, YANG Y Q, et al. Synthesis of nopinone-based quinazolin-2-amine fluorescent probe for detection of Cu and its application research[J]. Chin J Org Chem, 2021, 41(3): 1168-1176. DOI: 10.6023/cjoc202008049. | |
[2] | 姜倩, 王忠龙, 李明新, 等. 具有聚集诱导发光效应的诺蒎烷基β-二酮氟化硼络合物的合成及溶剂化显色效应的研究[J]. 有机化学, 2020, 40(12):4290-4297. |
JIANG Q, WANG Z L, LI M X, et al. Nopinone-based difluoroboron β-diketonate complex: aggregation-induced emission and solvatochromism[J]. Chin J Org Chem, 2020, 40(12): 4290-4297. DOI: 10.6023/cjoc202005049. | |
[3] | 张晶晶, 严鸣, 卢雯, 等. 基于香豆素-肟的次氯酸根探针的设计、合成及荧光成像应用[J]. 无机化学学报, 2021, 37(6):1071-1079. |
ZHANG J J, YAN M, LU W, et al. Design, synthesis and fluorescence imaging application of hypochlorite probe based on coumarin-oxime[J]. Chin J Inorg Chem, 2021, 37(6): 1071-1079. DOI:10.11862/CJIC.2021.133. | |
[4] | PARVEEN S D S, KUMAR B S, KUMAR S R R, et al. Isolation of biochanin A, an isoflavone, and its selective sensing of copper(Ⅱ) ion[J]. Sens Actuat B Chem, 2015, 221: 75-80. DOI: 10.1016/j.snb.2015.06.060. |
[5] | LIU P, ZHAO L L, WU X, et al. Fluorescence enhancement of quercetin complexes by silver nanoparticles and its analytical application[J]. Spectrochim Acta Part A Mol Biomol Spectrosc, 2014, 122: 238-245. DOI: 10.1016/j.saa.2013.11.055. |
[6] | YANG S L, YIN B, XU L, et al. A natural quercetin-based fluorescent sensor for highly sensitive and selective detection of copper ions[J]. Anal Methods, 2015, 7(11): 4546-4551. DOI: 10.1039/C5AY00375j. |
[7] | SUN L, WANG X Q, SHI J Z, et al. Kaempferol as an AIE-active natural product probe for selective Al3+ detection in Arabidopsis thaliana[J]. Spectrochim Acta Part A Mol Biomol Spectrosc, 2021, 249: 119303. DOI: 10.1016/j.saa.2020.119303. |
[8] | ZHONG Y Y, LI W H, RAN L D, et al. Inclusion complexes of tea polyphenols with HP-β-cyclodextrin: preparation, characterization, molecular docking, and antioxidant activity[J]. J Food Sci, 2020, 85(4): 1105-1113. DOI: 10.1111/1750-3841.15083. |
[9] | YAO Q, LIN M T, LAN Q H, et al. In vitro and in vivo evaluation of didymin cyclodextrin inclusion complexes: characterization and chemosensitization activity[J]. Drug Deliv, 2020, 27(1): 54-65. DOI: 10.1080/10717544.2019.1704941. |
[10] | GUAN M Y, SHI R, ZHENG Y Y, et al. Characterization, in vitro and in vivo evaluation of naringenin-hydroxypropyl-beta-cyclodextrin inclusion for pulmonary delivery[J]. Molecules, 2020, 25(3): 554. DOI: 10.3390/molecules25030554. |
[11] | XU T, ZHAO S J, WU X L, et al. Beta-cyclodextrin-promoted colorimetric and fluorescence turn-on probe for discriminating highly toxic thiophenol from biothiols[J]. ACS Sustain Chem Eng, 2020, 8(16): 6413-6421. DOI: 10.1021/acssuschemeng.0c00766. |
[12] | VAN BEEK T A, MONTORO P. Chemical analysis and quality control of Ginkgo biloba leaves, extracts, and phytopharmaceuticals[J]. J Chromatogr A, 2009, 1216(11): 2002-2032. DOI: 10.1016/j.chroma.2009.01.013. |
[13] | QIU Y X, HE D, YANG J X, et al. Kaempferol separated from Camellia oleifera meal by high-speed countercurrent chromatography for antibacterial application[J]. Eur Food Res Technol, 2020, 246(12): 2383-2397. DOI: 10.1007/s00217-020-03582-0. |
[14] | YANG S L, SUN L, SONG Z W, et al. Extraction and application of natural rutin from Sophora japonica to prepare the novel fluorescent sensor for detection of copper ions[J]. Front Bioeng Biotechnol, 2021, 9: 642138. DOI: 10.3389/fbioe.2021.642138. |
[15] | FACCHIANOA A, RAGONE R. Modification of Job's method for determining the stoichiometry of protein-protein complexes[J]. Anal Biochem, 2003, 313(1): 170-172. DOI: 10.1016/S0003-2697(02)00562-6. |
[16] | HAFUKA A, YOSHIKAWA H, YAMADA K, et al. Application of fluorescence spectroscopy using a novel fluoroionophore for quantification of zinc in urban runoff[J]. Water Res, 2014, 54: 12-20. DOI:10.1016/j.watres.2014.01.040. |
[17] | LEI R, XU X, YU F, et al. A method to determine quercetin by enhanced luminol electrogenerated chemiluminescence (ECL) and quercetin autoxidation[J]. Talanta, 2008, 75(4): 1068-1074. DOI: 10.1016/j.talanta.2008.01.010. |
[18] | MARKOVIC J M D, MARKOVIC Z S, BRDARIC T P, et al. Iron complexes of dietary flavonoids: combined spectroscopic and mechanistic study of their free radical scavenging activity[J]. Food Chem, 2011, 129(4): 1567-1577. DOI: 10.1016/j.foodchem.2011.06.008. |
[19] | BUKHARI S B, MEMON S, MAHROOF-TAHIR M, et al. Synthesis, characterization and antioxidant activity copper-quercetin complex[J]. Spectrochim Acta Part A Mol Biomol Spectrosc, 2009, 71(5): 1901-1906. DOI: 10.1016/j.saa.2008.07.030. |
[20] | SAVIC I M, NIKOLIC V D, SAVIC-GAJIC I, et al. Investigation of properties and structural characterization of the quercetin inclusion complex with (2-hydroxypropyl)-β-cyclodextrin[J]. J Incl Phenom Macrocycl Chem, 2015, 82(3): 383-394. DOI: 10.1007/s10847-015-0500-4. |
[21] | LIU B G, ZENG J, CHEN C, et al. Interaction of cinnamic acid derivatives with beta-cyclodextrin in water: experimental and molecular modeling studies[J]. Food Chem, 2015, 194: 1156-1163. DOI: 10.1016/j.foodchem.2015.09.001. |
[22] | 迟绍明, 杨松霖, 晋文, 等. 花旗松素、槲皮素和桑色素与丙二胺桥联β-环糊精的包合作用及抗氧化活性[J]. 分析化学, 2020, 48(2):215-223. |
CHI S M, YANG S L, JIN W, et al. Inclusion and antioxidant properties of taxifolin,quercetin and morin hydrate with diaminopropane bridged bis(β-cyclodextrin)s[J]. Chin J Anal Chem, 2020, 48(2): 215-223. DOI: 10.19756/j.issn.0253-3820.191554. | |
[23] | 刘雪芬, 李培武, 张文, 等. 环糊精对花生黄曲霉毒素B1荧光增强作用与应用研究[J]. 中国油料作物学报, 2010, 32(4):546-550. |
LIU X F, LI P W, ZHANG W, et al. Development and application of cyclodextrin fluorescence enhancement for aflatoxin B1 test in peanuts[J]. Chin J Oil Crop Sci, 2010, 32(4): 546-550. | |
[24] | UZASCI S, ERIM F B. Enhancement of native fluorescence intensity of berberine by (2-hydroxypropy1)-beta-cyclodextrin in capillary electrophoresis coupled by laser-induced fluorescence detection: application to quality control of medicinal plants[J]. J Chromatogr A, 2014, 1338:184-187. DOI: 10.1016/j.chroma.2014.02.068. |
[25] | 张敏, 张宇昊, 马良. β-环糊精及其衍生物、金属离子协同增敏黄曲霉毒素B1的荧光光谱分析及应用研究[J]. 分析化学, 2011, 39(12):1907-1911. |
ZHANG M, ZHANG Y H, MA L. Studies and application of fluorescence of aflatoxin B1 enhanced by synergetic effect of β-cyclodextin and its derivatives and metalions[J]. Chin J Anal Chem. 2011, 39(12): 1907-1911. DOI: 10.3724/SP.J.1096.2011.01907. | |
[26] | 周叶红, 武宏娟, 樊丽, 等. 荧光光谱法研究姜黄素与β-环糊精及其衍生物包合作用[J]. 分析科学学报, 2013, 29(5):673-676. |
ZHOU Y H, WU H J, FAN L, et al. Study on the inclusion interaction of curcumin and β-cyclodextrin and its derivatives by fluorescence spectrometry[J]. J Anal Sci. 2013, 29(5): 673-676. | |
[27] | 郑鑫程, 王剑凯, 曾晓莹, 等. 不同扩散条件对道路环境重金属含量的影响研究及污染评价[J]. 森林工程, 2021, 37(6):118-125. |
ZHENG X C, WANG J K, ZENG X Y, et al. Study on the influence of heavy metal content and pollution assessment in road environment under different diffusion conditions[J]. Forest Engineering, 2021, 37(6):118-125. | |
[28] | GU L Q, WAN X J, LIU H Y, et al. A novel ratiometric fluorescence sensor for Zn2+ detection[J]. Anal Methods, 2014, 6(21): 8460-8463. DOI: 10.1039/C4AY01483A. |
[29] | ZHOU A L, SADIK O A. Comparative analysis of quercetin oxidation by electrochemical, enzymatic, autoxidation, and free radical generation techniques: a mechanistic study[J]. J Agric Food Chem, 2008, 56(24): 12081-12091. DOI: 10.1021/jf802413v. |
[30] | LE NEST G, CAILLE O, WOUDSTRA M, et al. Zn-polyphenol chelation: complexes with quercetin, (+)-catechin, and derivatives: I optical and NMR studies[J]. Inorg Chim Acta, 2004, 357(3): 775-784. DOI: 10.1016/j.ica.2003.09.014. |
[31] | CORNARD J P, MERLIN J C. Spectroscopic and structural study of complexes of quercetin with Al(ⅡI)[J]. J Inorg Biochem, 2002, 92(1):19-27. DOI: 10.1016/S0162-0134(02)00469-5. |
[32] | YANG S L, JIANG W N, ZHAO F Y, et al. A highly sensitive and selective fluorescent sensor for detection of copper ions based on natural isorhamnetin from ginkgo leaves[J]. Sens Actuat B Chem, 2016, 236: 386-391. DOI: 10.1016/j.snb.2016.06.003. |
[33] | GU Z Y, LEI W, SHI W Y, et al. Studies on the interaction between 9-fluorenylmethyl chloroformate and Fe3+ and Cu2+ ions: spectroscopic and theoretical calculation approach[J]. Spectrochim Acta Part A Mol Biomol Spectrosc, 2014, 132: 361-368. DOI: 10.1016/j.saa.2014.05.025. |
[34] | ZHONG Y Q, CHEN Y, FENG X, et al. Hydrogen-bond facilitated intramolecular proton transfer in excited state and fluorescence quenching mechanism of flavonoid compounds in aqueous solution[J]. J Mol Liq, 2020, 302: 112562. DOI: 10.1016/j.molliq.2020.112562. |
[35] | WANG Z, ZOU W, LIU L Y, et al. Characterization and bacteriostatic effects of beta-cyclodextrin/quercetin inclusion compound nanofilms prepared by electrospinning[J]. Food Chem, 2021, 338: 127980. DOI: 10.1016/j.foodchem.2020.127980. |
[36] | PRAMANIK A, AMER S, GRYNSZPAN F, et al. Highly sensitive detection of cobalt through fluorescence changes in beta-cyclodextrin-bimane complexes[J]. Chem Commun, 2020, 56(81): 12126-12129. DOI: 10.1039/D0CC05812B. |
[37] | HAYNES A Z, LEVINE M. Detection of human growth hormone (hGH) via cyclodextrin-promoted fluorescence modulation[J]. Anal Lett, 2021, 54(11): 1871-1880. DOI: 10.1080/00032719.2020.1828445. |
[38] | SONG X L, WANG Y L, GAO L G. Mechanism of antioxidant properties of quercetin and quercetin-DNA complex[J]. J Mol Model, 2020, 26(6): 133. DOI: 10.1007/s00894-020-04356-x. |
[39] | KALINOWSKA M, LEWANDOWSKA H, PRUSZYNSKI M, et al. Co(Ⅱ) complex of quercetin-spectral, anti-/pro-oxidant and cytotoxic activity in HaCaT cell lines[J]. Appl Sci-Basel, 2021, 11(19): 9244. DOI: 10.3390/app11199244. |
[40] | YANG S L, JIANG W N, TANG Y, et al. Sensitive fluorescent assay for determination of Cu2+ in aqueous solution using isorhamnetin-beta-cyclodextrin inclusion[J]. Chin J Anal Chem, 2019, 47(6): e19059-e19065. DOI:10.1016/S1872-2040(19)61167-9. |
[1] | XIA Bing, DONG Chen, LU Ye, CHEN Jinhui, SHI Jisen*. Applications of nanomaterials in plant cell biology researches [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2011, 35(06): 121-126. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||