Spatio-temporal evolution of surface temperature in urban green space: a case study within the Sixth Ring Road in Beijing

FAN Boqing, LIU Dongyun, WANG Siyuan, Muhammad·Amir·Siddique

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (5) : 197-204.

PDF(4514 KB)
PDF(4514 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (5) : 197-204. DOI: 10.12302/j.issn.1000-2006.202112008

Spatio-temporal evolution of surface temperature in urban green space: a case study within the Sixth Ring Road in Beijing

Author information +
History +

Abstract

【Objective】As urbanization progresses, the urban heat island effect intensifies gradually. Studying the relationship between surface temperature and urban green spaces is important for mitigating the urban heat island effect, as it is a common factor in characterizing the urban thermal environment. However, there are few quantitative studies on the spatial and temporal variations of surface temperature in green spaces alone, and there is a lack of quantitative analyses of the four main types of surface temperature variation (constant, conversion, increase and loss) in different types of urban green spaces at a macroscopic scale. 【Method】 We used four phases of Landsat5 TM and Landsat8 OLI remote sensing image data from Beijing every six years between 1999, 2005, 2011 and 2017. We inverted the surface temperature of the area within the Sixth Ring Road of Beijing and simultaneously performed a remote sensing interpretation at the same time. We then separately extracted the surface temperature of the green space to analyze its spatial and temporal evolution characteristics. 【Result】 Calculating the normalized surface temperature values within the Sixth Ring in 1999, 2005, 2011 and 2017 revealed some differences in surface temperatures in different substrata. For example, the surface temperature of arable land is generally located in the urban fringe area and is less affected by urban construction and anthropogenic heat. Therefore, its surface temperature is lower than that of the green spaces in central urban areas. We observed some cooling characteristics in the green spaces, whereas the remaining substrates showed warming characteristics. The different components of the substratum were one of the main reasons for differences in urban surface temperatures. The spatial distribution of green spaces within the Sixth Ring Road changed to some extent from 1999 to 2017. The overall transfer of green space was 227.09 km2. Except for grassland, the other three types of green space tended to be transferred, and the highest proportion was transferred to impermeable surfaces. This continuous urban expansion and construction has led to changes in the composition of the urban substrates, resulting in increased surface temperature and intensification of the urban heat island phenomenon. The spatial and temporal evolution of green space leads to changes in surface temperature. An increase in green space leads to a decrease in surface temperature, whereas the exchanged, lost, and unchanged parts of green space show different degrees of warming. The loss of green space contributed more to the increase in the normalized surface temperature than the exchange of green space. For green space exchange, except for the conversion of grassland to other types of green space, which had a cooling effect, the remaining conversion types showed some warming effects. 【Conclusion】 To mitigate the urban heat island effect and create a more suitable living environment, increasing the area of green space, reasonably optimizing its layout and structure, protecting areas of permanent basic agricultural land, and converting grassland into other types of green space under the guidance of Beijing’s policy of “Leaving white space and increasing green space” is necessary. In the future, monitoring the urban thermal environment at different micro levels can be further combined to form a multi-scale and multi-dimensional surface temperature research mechanism, increase the level of surface temperature research, and provide a more diversified basis for subsequent research alongside macro-scale research on surface temperatures in urban construction areas.

Key words

urban heat island / land surface temperature / green space / land use / spatio-temporal evolution / Beijing City

Cite this article

Download Citations
FAN Boqing , LIU Dongyun , WANG Siyuan , et al. Spatio-temporal evolution of surface temperature in urban green space: a case study within the Sixth Ring Road in Beijing[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2023, 47(5): 197-204 https://doi.org/10.12302/j.issn.1000-2006.202112008

References

[1]
MANLEY G. On the frequency of snowfall in metropolitan England[J]. Q J Royal Meteorol Soc, 1958, 84(359):70-72.DOI:10.1002/qj.49708435910.
[2]
MOHAN M J, KANDYA A. Impact of urbanization and land-use/land-cover change on diurnal temperature range:a case study of tropical urban airshed of India using remote sensing data[J]. Sci Total Environ, 2015, 506/507:453-465.DOI:10.1016/j.scitotenv.2014.11.006.
[3]
姚远, 陈曦, 钱静. 城市地表热环境研究进展[J]. 生态学报, 2018, 38(3):1134-1147.
YAO Y, CHEN X, QIAN J. Research progress on the thermal environment of the urban surfaces[J]. Acta Ecol Sin, 2018, 38(3):1134-1147.DOI:10.5846/stxb201611022233.
[4]
庄晓林, 段玉侠, 金荷仙. 城市风景园林小气候研究进展[J]. 中国园林, 2017, 33(4):23-28.
ZHUANG X L, DUAN Y X, JIN H X. Research review on urban landscape micro-climate[J]. Chin Landsc Archit, 2017, 33(4):23-28.DOI:10.3969/j.issn.1000-6664.2017.04.005.
[5]
李方正. 基于多源数据分析的北京市中心城绿色空间格局演变和优化研究[D]. 北京: 北京林业大学, 2018.
LI F Z. Evolution and optimization of green space pattern in central Beijing based on multi-source data[D]. Beijing: Beijing Forestry University, 2018.
[6]
LOVELL S T, TAYLOR J R. Supplying urban ecosystem services through multifunctional green infrastructure in the United States[J]. Landscape Ecol, 2013, 28(8):1447-1463.DOI:10.1007/s10980-013-9912-y.
[7]
雷芸. 持续发展城市绿地系统规划理法研究[D]. 北京: 北京林业大学, 2009.
LEI Y. A study on theory and method of urban green space system planning based on the sustainable development[D]. Beijing: Beijing Forestry University, 2009.
[8]
梁钊明, 高守亭, 王东海, 等. 城市下垫面对渤海湾海风锋特征影响的一次数值试验[J]. 大气科学, 2013, 37(5):1013-1024.
LIANG Z M, GAO S T, WANG D H, et al. A numerical study of the urban underlying surface effect on the characteristics of a sea breeze front in the Bohai Bay region[J]. Chin J Atmos Sci, 2013, 37(5):1013-1024.DOI:10.3878/j.issn.1006-9895.2013.12153.
[9]
曹洲榕, 禹华谦. 城市水环境问题及对策探讨[J]. 四川建筑, 2011, 31(1):212-214.
CAO Z R, YU H Q. Discussion on urban water environment problems and countermeasures[J]. Sichuan Archit, 2011, 31(1):212-214.DOI:10.3969/j.issn.1007-8983.2011.01.086.
[10]
YAN H, WU F, DONG L. Influence of a large urban park on the local urban thermal environment[J]. Sci Total Environ, 2018, 622/623:882-891.DOI:10.1016/j.scitotenv.2017.11.327.
[11]
MIDDEL A, CHHETRI N, QUAY R. Urban forestry and cool roofs:assessment of heat mitigation strategies in Phoenix residential neighborhoods[J]. Urban For Urban Green, 2015, 14(1):178-186.DOI:10.1016/j.ufug.2014.09.010.
[12]
张昌顺, 谢高地, 鲁春霞, 等. 北京城市绿地对热岛效应的缓解作用[J]. 资源科学, 2015, 37(6):1156-1165.
Abstract
按照城市功能定位将北京市分为中心城、卫星城和郊区,利用2005-2011年的19个站点逐日3个时次(8∶00、14∶00、20∶00)的温度数据,对比分析中心城和卫星城城市热岛效应强度及其变化,同时利用野外试验数据,对比研究不同城市绿地对北京城市热岛的缓解作用。结果表明:①各时次年平均气温中心城>卫星城>郊区,且中心城和卫星城年平均气温波动上升,而郊区却波动下降,致使各时次中心城和卫星城热岛强度波动增强,且热岛强度增幅中心城高于卫星城;②中心城热岛强度冬季>夏季,而卫星城夏季>冬季,冬季均以8∶00最强,14∶00最弱,夏季卫星城各时次城市热岛强度次序与冬季相同,但夏季中心城却以20∶00最强,14∶00最弱;③绿地缓解热岛效应功能与绿地类型、树种组成、林分密度等群落结构及管理措施等相关,试验绿地夏季9∶00-16∶00的降温幅度约为0.2~12.9℃,各类绿地平均降温幅度介于1.2~9.5℃,平均降温约4.2℃,以乔草绿地最大,草地最低。因此,合理的群落结构与空间布局可增强区域绿地缓解热岛效应功能。
ZHANG C S, XIE G D, LU C X, et al. The mitigating effects of different urban green lands on the heat island effect in Beijing[J]. Resour Sci, 2015, 37(6):1156-1165.
[13]
李延明, 张济和, 古润泽. 北京城市绿化与热岛效应的关系研究[J]. 中国园林, 2004, 20(1):72-75.
LI Y M, ZHANG J H, GU R Z. Research on the relationship between urban greening and the effect of urban heat island[J]. J Chin Landsc Archit, 2004, 20(1):72-75. DOI:10.3969/j.issn.1000-6664.2004.01.020.
[14]
唐罗忠, 李职奇, 严春风, 等. 不同类型绿地对南京热岛效应的缓解作用[J]. 生态环境学报, 2009, 18(1):23-28.
TANG L Z, LI Z Q, YAN C F, et al. Mitigative effects of different vegetations on heat island effect in Nanjing[J]. Ecol Environ Sci, 2009, 18(1):23-28.DOI:10.3969/j.issn.1674-5906.2009.01.005.
[15]
刘艳红, 郭晋平. 绿地空间分布格局对城市热环境影响的数值模拟分析:以太原市为例[J]. 中国环境科学, 2011, 31(8):1403-1408.
LIU Y H, GUO J P. Numerical simulation for the influence of green space patterns on urban thermal environment:taking Taiyuan City as an example[J]. China Environ Sci, 2011, 31(8):1403-1408.DOI:CNKI:SUN:ZGHJ.0.2011-08-038.
[16]
徐涵秋, 唐菲. 新一代Landsat系列卫星:Landsat 8遥感影像新增特征及其生态环境意义[J]. 生态学报, 2013, 33(11):3249-3257.
XU H Q, TANG F. Analysis of new characteristics of the first Landsat 8 image and their eco-environmental significance[J]. Acta Ecol Sin, 2013, 33(11):3249-3257.DOI:10.5846/stxb201305030912.
[17]
周淑贞, 束炯. 城市气候学[M]. 北京: 气象出版社, 1994:5-8.
[18]
胡平. 基于Landsat 8的成都市中心城区城市热岛效应研究[D]. 成都: 成都理工大学, 2015.
HU P. Study on urban heat island in the central city of Chengdu based on Landsat 8[D]. Chengdu: Chengdu University of Technology, 2015.
[19]
CUI Y P, XU X L, DONG J W, et al. Influence of urbanization factors on surface urban heat island intensity:a comparison of countries at different developmental phases[J]. Sustainability, 2016, 8(8):706.DOI:10.3390/su8080706.
[20]
陈燕红, 蔡芫镔, 仝川. 基于遥感的城市绿色空间演化过程的温度效应研究:以福州主城区为例[J]. 生态学报, 2020, 40(7):2439-2449.
CHEN Y H, CAI Y B, TONG C. Temperature effect under the green space evolution based on remote sensing:a case study of Fuzhou,China[J]. Acta Ecol Sin, 2020, 40(7):2439-2449.DOI:10.5846/stxb201901030023.
[21]
杨朝斌. 城市空间结构对城市热环境时空异质性分布影响研究[D]. 哈尔滨: 中国科学院大学(中国科学院东北地理与农业生态研究所), 2018.
YANG C B. The effect of the urban spatial structure on the spatio-temperal patterns of the urban thermal environment[D]. Harbin: Northeast Institute of Geography and Agroecology,Chinese Academy of Sciences, 2018.
PDF(4514 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/