The relationship between physiological metabolism changes and embryogenic competence of endosperm in Ginkgo biloba at different developmental stages

MA Juanjuan, WU Qinxia, CHEN Ying, WANG Ruimin, YUAN Binling, HU Yuchen, CAO Fuliang

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (4) : 68-76.

PDF(2630 KB)
PDF(2630 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (4) : 68-76. DOI: 10.12302/j.issn.1000-2006.202112010

The relationship between physiological metabolism changes and embryogenic competence of endosperm in Ginkgo biloba at different developmental stages

Author information +
History +

Abstract

【Objective】 In this study, high-embryogenic competence endosperm explants in Ginkgo biloba were screened out by investigating the relationship between the physiological changes in endosperm during different development periods and embryogenic callus induction. The results will provide supports for studying somatic embryogenesis and establishing a somatic embryogenesis system for G. biloba. 【Method】 Changes in antioxidant enzyme activities, flavonoids, and endogenous hormone content were measured, and embryogenic callus were induced using G. biloba endosperm as explants in eight stages (during June 10 to September 15). 【Result】 The endosperm development and embryogenic competence of G. biloba can be divided into three stages (Ⅰ-Ⅲ). The soluble protein and flavonoids content, peroxidase and catalaseenzyme activities, and indoleacetic acid (IAA) /abscisic acid (ABA) ratio in the endosperm of G. biloba all reached the highest levels; however, the (zeatin nucleoside (ZR) + isopentenyl pyrophosphate (iPA))/ABA ratio was lower than that at stage Ⅰ (during June 10 to June 30). Accordingly, the endosperm at this stage had high embryogenic competence and induction ability of embryogenic callus. Moreover, the endosperm had a high water content and superoxide dismutase (SOD) activity, and high IAA/ABA ratios, and it was also easy to induce callus; however, these induced callus were susceptible to loosening and easy browning, and the non-embryonic and embryogenic competence levels were lower at this stage. Stage Ⅱ lasted from June 30 to August 10. The three resistant enzyme activities, flavonoid content, and IAA/ABA ratios all exhibited low levels, while the (ZR+iPA)/ABA ratio was high. The callus induction rate was the lowest among the three stages, and the embryogenic competence level was lower than that at stage Ⅲ. 【Conclusion】 The embryogenic competence of G. biloba endosperm and embryogenic callus induction in the three stages of endosperm development was in the order stage Ⅲ > Ⅱ > Ⅰ. The optimum period of embryogenic competence in the endosperm explant was stage Ⅲ (August 17 to September 15) and the endosperm induced a high rate of embryogenic callus at this stage.

Key words

Ginkgo abiloba / endosperm / explant / development stages / embryogenic competence / embryogenic callus

Cite this article

Download Citations
MA Juanjuan , WU Qinxia , CHEN Ying , et al . The relationship between physiological metabolism changes and embryogenic competence of endosperm in Ginkgo biloba at different developmental stages[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(4): 68-76 https://doi.org/10.12302/j.issn.1000-2006.202112010

References

[1]
曹福亮. 中国银杏志[M]. 北京: 中国林业出版社, 2007.
CAO F L. Ginkgo biloba in China[M]. Beijing: China Forestry Publishing House, 2007.
[2]
辜夕容, 江亚男, 倪亚兰, 等. 叶用银杏的良种选育与定向培育研究进展[J]. 中草药, 2017, 48(15):3218-3227.
GU X R, JIANG Y N, NI Y L, et al. Research progress on breeding and cultivation of Ginkgo biloba for leaf use in China[J]. Acupunct Res, 2017, 48(15):3218-3227.DOI:10.7501/j.issn.0253-2670.2017.15.030.
[3]
盛丽莉, 陈颖, 汪南阳, 等. 银杏不同外植体的细胞学观察:体胚发生不定芽诱导及不定根的发生过程[J]. 中南林业科技大学学报, 2012, 32(4):153-158.
SHENG L L, CHEN Y, WANG N Y, et al. Histological observation of somatic embryogenesis and adventitious buds induction from Ginkgo biloba L. different expalnts in vitro culture[J]. J Central South Univ For Technol, 2012, 32(4):153-158.DOI:10.14067/j.cnki.1673-923x.2012.04.039.
[4]
由香玲, 谭啸, 戴金玲, 等. 胁迫诱导植物体细胞胚发生的研究进展[J]. 西北植物学报, 2010, 30(9):1929-1934.
YOU X L, TAN X, DAI J L, et al. Progress on the stress-induction of plant somatic embryogenesis[J]. Acta Bot Boreali Occidentalia Sin, 2010, 30(9):1929-1934.
[5]
ELHITI M, HUANG S L, MIRA M M, et al. Redirecting cell fate during in vitro embryogenesis:phytoglobins as molecular switches[J]. Front Plant Sci, 2018, 9:1477.DOI:10.3389/fpls.2018.01477.
[6]
KEUCHI M, FAVERO D S, SAKMOTO Y, et al. Molecular mechanisms of plant regeneration[J]. Annu Rev Plant Biol, 2019, 70: 377-406. DOI:10.1146/annurev-arplant-050718-100434.
[7]
LI P T, XIAN S Z, YING H S. Regulation of cell reprogramming by auxin during somatic embryogenesis[J]. ABIOTECH, 2020, 1(3):185-193. DOI: 10.1007/S42994-020-00029-8.
[8]
许雯婷, 刘慧春, 张加强, 等. 体胚发生的分子调控机制及其在花卉中的研究进展[J]. 植物生理学报, 2021, 57 (8): 1625-1632.
XU W T, LIU H C, ZHANG J Q, et al. Molecular regulatory mechanism of somatic embryogenesis and its research progress in ornamental plants[J]. Plant Physiol Sin, 2021, 57 (8): 1625-1632. DOI:10.13592/j.cnki.ppj.2020.0601.
[9]
NIC-CAN G I, GALAZ-AVALOS R M, DE-LA-PENA C, et al. Somatic embryo-genesis:identified factors that lead to embryogenic repression: a case of species of the same genus[J]. PloS One, 2015, 10 (6):e0126414. DOI:10.1371/journal.pone.0126414.
[10]
YAN R, SUN Y, SUN H M. Current status and future perspectives of somatic embryogenesis in Lilium[J]. Plant Cell Tissue Organ Cult (PCTOC), 2020, 143(2):229-240.DOI:10.1007/s11240-020-01916-0.
[11]
ZHOU X, ZHENG R, LIU G, et al. Desiccation treatment and endogenous IAA levels are key factors influencing high frequency somatic embryogenesis in Cunninghamia lanceolata (Lamb.) hook[J]. Front Plant Sci, 2017, 8:2054. DOI: 10.3389/fpls.2017.02054.
[12]
李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.
LI H S. Principles and techniques of plant physiological biochemical experiment[M]. Beijing: Higher Education Press, 2000.
[13]
邓桂春, 王鑫, 赵丽艳, 等. 分光光度法测定银杏叶中黄酮的含量[J]. 辽宁大学学报(自然科学版), 2005, 32(2):101-104.
DENG G C, WANG X, ZHAO L Y, et al. Spectrophotometric determination of total flavonoids in Ginkgo leaves[J]. J Liaoning Univ (Nat Sci Ed), 2005, 32(2):101-104.DOI: 10.3969/j.issn.1000-5846.2005.02.002.
[14]
何慕涵, 苏文华, 张光飞, 等. 不同地区短葶飞蓬总黄酮含量与PAL和4CL酶活性的比较[J]. 中国农学通报, 2012, 28(25):179-183.
HE M H, SU W H, ZHANG G F, et al. The comparison between the total flavonoid content and the activities of PAL and 4CL in Erigeron breviscapus from different areas[J]. Chinese Agricultural Science Bulletin, 2012, 28(25):179-183.
[15]
袁斌玲, 王瑞敏, 陈颖, 等. NaCl处理下茉莉酸甲酯对金叶银杏光合色素、抗氧化性及黄酮代谢的调控作用[J]. 西北林学院学报, 2020, 35(2):64-71.
YUAN B L, WANG R M, CHEN Y, et al. The regulation of methyl jasmonate on photosynthetic pigments,antioxidation and flavonoid metabolism in golden-leaf Ginkgo biloba seedlings under salinity treatment[J]. J Northwest For Univ, 2020, 35(2):64-71.DOI:10.3969/j.issn.1001-7461.2020.02.09.
[16]
吴颂如, 陈婉芬, 周燮. 酶联免疫法(ELISA)测定内源植物激素[J]. 植物生理学通讯, 1988, 24(5):53-57.
WU S R, CHEN W F, ZHOU X. Enzyme linked immunosorbent assay for endogenous plant hormones[J]. Plant Physiol Commun, 1988, 24(5):53-57.DOI:10.13592/j.cnki.ppj.1988.05.020.
[17]
GUPTA P K, DURZAN D J. Shoot multiplication from mature trees of Douglas-fir (Pseudotsuga menziesii) and sugar pine (Pinus lambertiana)[J]. Plant Cell Rep, 1985, 4(4):177-179.DOI:10.1007/BF00269282.
[18]
WANG D D, GUO Y L, LONG X F, et al. Exogenous spermidine promotes somatic embryogenesis of Cunninghamia lanceolata by altering the endogenous phytohormone content[J]. Phyton, 2020, 89(1):27-34.DOI:10.32604/phyton.2020.08971.
[19]
PULLMAN G S, ZENG X Y, COPELAND-KAMP B, et al. Conifer somatic embryogenesis: improvements by supplementation of medium with oxidation-reduction agents[J]. Tree Physiol, 2015, 35(2):209-224.DOI:10.1093/treephys/tpu117.
[20]
龚丽, 胡恒康, 胡渊渊, 等. 香榧幼胚发育与胚性感受态之间的相关性[J]. 浙江农林大学学报, 2018, 35(5):861-867.
GONG L, HU H K, HU Y Y, et al. Immature embryo development and embryogenic frequency in Torreya grandis ‘Merrillii’[J]. J Zhejiang A&F Univ, 2018, 35(5):861-867.DOI:10.11833/j.issn.2095-0756.2018.05.010.
[21]
吕雪芹, 潘烨, 陆彦, 等. 银杏胚乳发育过程中养分积累规律的研究[J]. 安徽农业科学, 2009, 37(6):2475-2476,2479.
LYU X Q, PAN Y, LU Y, et al. Study on the rule of nutrient accumulation during the development of endosperm in Ginkgo biloba L[J]. J Anhui Agric Sci, 2009, 37(6):2475-2476,2479.DOI:10.13989/j.cnki.0517-6611.2009.06.122.
[22]
张慧君, 华玉伟, 黄天带, 等. 橡胶树体胚发生过程中的生理生化特性[J]. 热带农业科学, 2014, 34(10):12-14,18.
ZHANG H J, HUA Y W, HUANG T D, et al. Physiologic and biochemical characteristics in the development of embryogenesis of rubber tree[J]. Chin J Trop Agric, 2014, 34(10):12-14,18.DOI:10.3969/j.issn.1009-2196.2014.10.003.
[23]
彭春雪, 崔雪梅, 沈海龙. 暴马丁香成熟胚愈伤组织和体胚诱导及其生理状态解析[J]. 植物研究, 2021, 41(4):557-563.
PENG C X, CUI X M, SHEN H L. Callus induction and somatic embryogenesis and physiological state analysis from mature zygotic embryo explant of Syringareti culata var. mandshurica[J]. Bull Bot Res, 2021, 41(4):557-563.DOI:10.7525/j.issn.1673-5102.2021.04.011.
[24]
SUN Y J, QIAO L P, SHEN Y, et al. Phytochemical profile and antioxidant activity of physiological drop of Citrus fruits[J]. J Food Sci, 2013, 78(1):37-42.DOI:10.1111/j.1750-3841.2012.03002.x.
[25]
GOLAWSKA S, SPRAWKA I, LUKASIK I, et al. Are naringenin and quercetin useful chemicals in pest-management strategies?[J]. J Pest Sci, 2014, 87(1):173-180.DOI:10.1007/s10340-013-0535-5.
[26]
周思宇, 王永清. 枇杷叶片胚性愈伤组织诱导与内源激素含量的关系[J]. 植物科学学报, 2017, 35(1):99-106.
ZHOU S Y, WANG Y Q. Relationship between embryonic callus induction from leaves and endogenous hormone content in loquat (Eriobotrya japonica Lindl.)[J]. Plant Sci J, 2017, 35(1):99-106.DOI:10.11913/PSJ.2095-0837.2017.10099.
[27]
张慧君, 葛宇, 杨先锋, 等. 内源激素对橡胶树花药体细胞胚发生的影响[J]. 江苏农业科学, 2016, 44(7):239-241.
ZHANG H J, GE Y, YANG X F, et al. Effects of endogenous hormones on somatic embryogenesis of rubber tree anthers[J]. Jiangsu Agric Sci, 2016, 44(7):239-241.DOI:10.15889/j.issn.1002-1302.2016.07.067.
[28]
NOLAN K E, SONG Y H, LIAO S Y, et al. An unusual abscisic acid and gibberellic acid synergism increases somatic embryogenesis,facilitates its genetic analysis and improves transformation in Medicago truncatula[J]. PLoS One, 2014, 9(6):e99908.DOI:10.1371/journal.pone.0099908.
[29]
郭玉琼, 黄道斌, 常笑君, 等. 铁观音茶树体胚发生及其内源激素变化[J]. 应用与环境生物学报, 2018, 24(4):824-832.
GUO Y Q, HUANG D B, CHANG X J, et al. Somatic embryogenesis and the changes of endogenous hormones in Camellia sinensis ‘Tieguanyin’[J]. Chin J Appl Environ Biol, 2018, 24(4):824-832.DOI:10.19675/j.cnki.1006-687x.2017.12027.
PDF(2630 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/