Young growth rhythm, annual and density interaction effects and selection strategies of Picea abies clones

OU Yang, OUYANG Fangqun, SUN Meng, WANG Chao, WANG Junhui, AN Sanping, WANG Lifang, XU Na, WANG Meng

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (6) : 95-104.

PDF(2185 KB)
PDF(2185 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (6) : 95-104. DOI: 10.12302/j.issn.1000-2006.202112031

Young growth rhythm, annual and density interaction effects and selection strategies of Picea abies clones

Author information +
History +

Abstract

【Objective】 This reseach aims to select Picea abies varieties for reforestation in Xiaolongshan area of Tianshui of Gansu Province based on analyses of early growth and genetic traits. 【Method】 Using 267 P. abies clones of young Czech provenance as test materials, we evaluated the growth and clone repeatability of 4 to 9 years old spruce trees, and the relationship with year, then the elite clones were chosen. 【Result】 The average tree height of 9 years old spruce was (269.79±41.3) cm. The repeatability of the clones during the period of 4 to 9 years old was 0.45 to 0.69, and the high repeatability indicated that the clones had selection potential. Age-specific genetic variation in growth traits (tree height, diameter at breast height, crown width, shoot length and number of collaterals, etc.) differed significantly among blocks and clones with pronounced interactions between the two (variance component 20.37%-27.23%). Tree height growth was affected by age, block, clone, interactions between age and clone, and between block and clone with variance component ranking order from high to low: age (70.05%), followed by the interactions between block and clone (7.59%), and between age and clone (1.23%). Significant positive correlations among growth years were found for tree height phenotypic traits (0.61-0.95), genetic traits (0.62-0.97) and environmental variables (0.63-0.95). Ten clones were selected for reforestation in the Xiaolongshan area based on the relative genetic value of the 9-year-old tree height with an average tree height of 369.7 cm. The selection rate was 3.7%, and the actual genetic enhancement for tree height was 9.72%-16.89% with an expected genetic enhancement of 65.66%-107.88% at tree mature stage. The average tree heights of the selected clones were higher than the control clones in 4 to 9 years with a substantial variation in height growth among different years. The Finlay-Wilkinson model was used to analyze the stability of the mean tree height of clones from 4 to 9 years old. The better the growth of the clone, the higher the estimated value of stability, indicating that the clone was more unstable. Annual average tree height increment correlated positively with the annual extreme high temperature, and negatively with the annual rainfall. 【Conclusion】 P. abies clones have extensive genetic variation in growth traits, high repeatability, and are opted for selection. The 10 P. abies clones selected based on their genetic values of tree height at 9 years can be used for afforestation in the Xiaolongshan area of Tianshui, Gansu. Differences in extreme high temperature and average annual rainfall between years may account for the instability of the selected clones across tree ages.

Key words

Picea abies / clone / growth rhythm / genetic variation / stability / selection strategy

Cite this article

Download Citations
OU Yang , OUYANG Fangqun , SUN Meng , et al . Young growth rhythm, annual and density interaction effects and selection strategies of Picea abies clones[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2023, 47(6): 95-104 https://doi.org/10.12302/j.issn.1000-2006.202112031

References

[1]
胡勐鸿, 欧阳芳群, 贾子瑞, 等. 我国云杉扦插繁殖技术研究进展[J]. 温带林业研究, 2018, 1(1): 20-29.
HU M H, OUYANG F Q, JIA Z R, et al. Research progress of cutting reproduction technology of Picea in China[J]. J Temp For Res, 2018, 1(1):20-29.DOI:CNKI:SUN:WDLY.0.2018-01-007.
[2]
高本旺, 欧阳芳群, 高晗, 等. 鄂西地区欧洲云杉幼龄无性系生长差异及早期评价与选择[J]. 林业科学研究, 2021, 34(5): 88-94.
GAO B W, OUYANG F Q, GAO H, et al. Growth difference and early evaluation and selection of young Picea abies clones in western Hubei[J]. For Res, 2021, 34(5):88-94.DOI: 10.13275/j.cnki.lykxyj.2021.005.010.
[3]
安三平, 王丽芳, 蒋明, 等. 蓝云杉、欧洲云杉、白云杉在甘肃中部干旱半干旱区的适生性评价[J]. 林业科技通讯, 2018(6): 11-13.
AN S P, WANG L F, JIANG M, et al. Evaluation of adaptability in arid and semi-arid areas of Picea pungens,Picea abies and Picea glauca in central Gansu[J]. For Sci Technol, 2018(6):11-13.DOI: 10.13456/j.cnki.lykt.2018.06.004.
[4]
李录林, 吕寻, 胡勐鸿, 等. 甘肃小陇山林区5种引进树种生态适应性评价[J]. 中南林业科技大学学报, 2017, 37(8): 29-33.
LI L L, LV X, HU M H, et al. Ecological adaptability evaluation of five introduced species in Xiaolongshan forest area in Gansu Province[J]. J Cent South Univ For Technol, 2017, 37(8):29-33,65.DOI: 10.14067/j.cnki.1673-923x.2017.08.006.
[5]
马建伟, 胡勐鸿, 张宋智, 等. 引种欧洲云杉自由授粉家系种实性状的多样性[J]. 东北林业大学学报, 2014, 42(3): 5-10.
MA J W, HU M H, ZHANG S Z, et al. Phenotypic diversity of cone and seed traits in open-pollinated families of introduced Picea abies(L.) Karst[J]. J Northeast For Univ, 2014, 42(3):5-10.DOI: 10.13759/j.cnki.dlxb.2014.03.002.
[6]
潘春林. 欧洲云杉嫁接无性系遗传变异与选择[D]. 中国林业科学研究院, 2012.
PAN C L. Selection of clones and genetic variable of grafting clones of Picea abies[D]. Beijing: Chinese Academy of Forestry, 2012.
[7]
胡勐鸿, 欧阳芳群, 贾子瑞, 等. 欧洲云杉扦插生根影响因子研究与生根力优良单株选择[J]. 林业科学, 2014, 50(2): 42-49.
HU M H, OUYANG F Q, JIA Z R, et al. Factors affecting rooting of Picea abies shoot cuttings and individual selection with high rooting ability[J]. Sci Silvae Sin, 2014, 50(2):42-49.DOI: 10.11707/j.1001-7488.20140207.
[8]
马常耕. 无性系林业与无性系育种(续)[J]. 湖南林业科技, 1986, 13(4):5-10.
MA C G. Clonal forestry and clonal breeding (continued)[J]. Hunan For Sci Technol, 1986, 13(4):5-10.
[9]
王明庥. 论无性系林业:概念和应用[J]. 林业科技开发, 1992(1): 2-4.
WANG M X. On clonal forestry: concept and application[J]. China For Sci Technol, 1992, 6(1):2-4.DOI: 10.13360/j.issn.1000-8101.1992.01.001.
[10]
孙晓梅, 杨秀艳. 林木育种值预测方法的应用与分析[J]. 北京林业大学学报, 2011, 33(2): 65-71.
SUN X M, YANG X Y. Applications and analysis of methods for breeding value prediction in forest trees[J]. J Beijing For Univ, 2011, 33(2):65-71.DOI: 10.13332/j.1000-1522.2011.02.020.
[11]
续九如. 林木数量遗传学[M]. 1版. 北京: 高等教育出版社, 2006: 117.
XU J R. Quantitative genetics in forestry[M]. 1st ed.ed. Beijing: Higher Education Press, 2006:117.
[12]
胡希远, 尤海磊, 宋喜芳, 等. 作物品种稳定性分析不同模型的比较[J]. 麦类作物学报, 2009, 29(1): 110-117.
HU X Y, YOU H L, SONG X F, et al. Comparison of different models for crop stability analysis[J]. J Triticeae Crops, 2009, 29(1):110-117.DOI: 10.7606/j.issn.1009-1041.2009.01.021.
[13]
安三平, 王丽芳, 王美琴, 等. 欧洲云杉无性系苗期选育[J]. 东北林业大学学报, 2011, 39(12): 16-19, 23.
AN S P, WANG L F, WANG M Q, et al. Selection and breeding of cutting clones of Picea abies during seedling stage[J]. J Northeast For Univ, 2011, 39(12):16-19,23.DOI: 10.13759/j.cnki.dlxb.2011.12.031.
[14]
ALBERTO F J, AITKEN S N, ALÍA R, et al. Potential for evolutionary responses to climate change-evidence from tree populations[J]. Global Change Biology, 2013, 19(6): 1645-1661. DOI: 10.1111/gcb.12181.
[15]
ROSVALL O. Using Norway spruce clones in Swedish forestry: Swedish forest conditions, tree breeding program and experiences with clones in field trials[J]. Scandinavian J For Res, 2019, 34(5): 342-351. DOI: 10.1080/02827581.2018.1562566.
[16]
AITKEN S N, YEAMAN S, HOLLIDAY J A, et al. Adaptation, migration or extirpation: climate change outcomes for tree populations[J]. Evolutionary Applications, 2008, 1(1): 95-111. DOI: 10.1111/j.1752-4571.2007.00013.x.
[17]
CHEN Z, HAI H N T, HELMERSSON A, et al. Advantage of clonal deployment in Norway spruce (Picea abies (L.) H. Karst)[J]. Annals of Forest Science., 2020, 77(1): 14. DOI: 10.1007/s13595-020-0920-1.
[18]
安三平, 欧阳芳群, 马建伟, 等. 欧洲云杉无性系遗传变异及早期选择[J]. 西北林学院学报, 2018, 33(6): 61-65.
AN S P, OUYANG F Q, MA J W, et al. Genetic variation and early evaluation of Picea abies clones[J]. J Northwest For Univ, 2018, 33(6):61-65.DOI: 10.3969/j.issn.1001-7461.2018.06.10.
[19]
NGUYEN H T H, CHEN Z, FRIES A, et al. Effect of additive, dominant and epistatic variances on breeding and deployment strategy in Norway spruce[J]. Forestry (London), 2022, 95(3): 416-427. DOI: 10.1093/forestry/cpab052.
[20]
ISIK K, KLEINSCHMIT J, STEINER W. Age-age correlations and early selection for height in a clonal genetic test of Norway spruce[J]. Forest Science, 2010, 56(2): 212. DOI:10.1016/j.forpol.2009.10.007
[21]
SKRØPPA T, STEFFENREM A. Performance and phenotypic stability of Norway spruce provenances, families, and clones growing under diverse climatic conditions in four Nordic Countries[J]. Forests, 2021, 12(2): 230. DOI: 10.3390/f12020230.
[22]
WU H X, SVERIGES L. Benefits and risks of using clones in forestry-a review[J]. Scandinavian J For Res, 2019, 34(5): 352-359. DOI: 10.1080/02827581.2018.1487579.
[23]
BENTZER B G, FOSTER G S, HELLBERG A R. Impact of clone mixture composition on stability of 7th-year mean height in a series of Norway spruce clone tests[J]. Cana J Fore Res, 1990, 20(6): 757-763. DOI: 10.1139/x90-100.
[24]
马常耕. 世界云杉无性系林业发展现状[J]. 世界林业研究, 1993(6): 24-31.
MA C G. State of development of clonal forestry of Picea asperata in the world[J]. World For Res, 1993, 6(6):24-31.DOI: 10.13348/j.cnki.sjlyyj.1993.06.005.
[25]
T.L.怀特, (美)W.T.亚当斯, (美)D.B.尼尔. 森林遗传学[M]. 崔建国, 李火根, 主译. 北京: 科学出版社, 2013:122-123.
WHITE T L, ADAMS W T, NEIL D B. Forest genetics[M]. CUIJ G, LIH G. Beijing: Science Press, 2013:122-123.
[26]
李火根, 黄敏仁, 潘惠新, 等. 美洲黑杨新无性系生长遗传稳定性分析[J]. 东北林业大学学报, 1997, 25(6):1-5.
LI H G, HUANG M R, PAN H X, et al. The genetic stability analysis of growth for new cottonwood clones[J]. J Northeast For Univ, 1997, 25(6):1-5. DOI:10.1007/BF02951625.
[27]
徐焕文, 刘宇, 李志新, 等. 5年生白桦杂种子代多点稳定性分析及优良家系选择[J]. 北京林业大学学报, 2015, 37(12): 24-31.
XU H W, LIU Y, LI Z X, et al. Analysis of the stability and superiority of five-year-old birch crossbreed families based on a multi-site test[J]. J Beijing For Univ, 2015, 37(12):24-31.DOI: 10.13332/j.1000-1522.20140466.
[28]
张磊, 张含国, 邓继峰, 等. 杂种落叶松苗高生长稳定性分析[J]. 浙江林学院学报, 2010, 27(5): 706-712.
ZHANG L, ZHANG H G, DENG J F, et al. Stability of hybrid larches (Larix) with seedling height growth[J]. J Zhejiang For Coll, 2010, 27(5):706-712.DOI: 10.3969/j.issn.2095-0756.2010.05.011.
[29]
王秋玉, 杨书文, 刘桂丰, 等. 红皮云杉遗传稳定性的研究及最佳种源选择[J]. 东北林业大学学报, 1993(1): 5-12.
WANG Q Y, YANG S W, LIU G F, et al. A study on the genetic stability of Picea koraiensis and the optimal provenance selection[J]. J Northeast For Univ, 1993, 21(1):5-12. DOI:CNKI:SUN:DBLY.0.1993-01-001.
[30]
夏燕, 张建伟, 田开春, 等. 云杉5个种18个种源的早期评价[J]. 东北林业大学学报, 2014, 42(12): 1-6.
XIA Y, ZHANG J W, TIAN K C, et al. Early valuation of eighteen provenances from five species of spruce[J]. J Northeast For Univ, 2014, 42(12):1-6.DOI: 10.13759/j.cnki.dlxb.20141210.013.
[31]
李有东, 王军辉, 黄成名, 等. 欧洲云杉优良无性系选择[J]. 湖南林业科技, 2015, 42(06): 57-60.
LI Y D, WANG J H, HUANG C M, et al. Selection of excellent clones of Picea abies (L.) Karst[J]. Hunan For Sci Technol, 2015, 42(6):57-60.DOI: 10.3969/j.issn.1003-5710.2015.06.009.
[32]
石辉平, 王军辉, 黄成名, 等. 欧洲云杉二代优良家系早期选择[J]. 绿色科技, 2016(11): 12-14.
SHI H P, WANG J H, HUANG C M, et al. Early selection of the second generation excellent families in Picea abies[J]. J Green Sci Technol, 2016(11):12-14.DOI: 10.16663/j.cnki.lskj.20160707.005.
[33]
CHEN Z, KARLSSON B, MÖRLING T, et al. Genetic analysis of fiber dimensions and their correlation with stem diameter and solid-wood properties in Norway spruce[J]. Tree Genetics & Genomes, 2016, 12(6): 1. DOI: 10.1007/s11295-016-1065-0.
[34]
郭海沣. 间伐对林口林业局主要人工林生长、结构及更新的影响[D]. 哈尔滨: 东北林业大学, 2019.
GUO H F. Effect of thinning on growth,structure and regeneration of main plantations in Linkou forestry bureau[D]. Harbin: Northeast Forestry University, 2019.
[35]
赵状. 抚育间伐对小兴安岭针叶树种碳汇功能影响效果评价[D]. 哈尔滨: 东北林业大学, 2021.
ZHAO Z. Evaluation of the impact of thinning on carbon sink function of coniferous tree species in xiaoxing’an mountains[D]. Harbin: Northeast Forestry University, 2021.
[36]
于雷, 贾炜玮, 丛培东. 抚育间伐对红松人工林林木形质的影响[J]. 西南林业大学学报(自然科学), 2021, 41(6): 149-159.
YU L, JIA W W, CONG P D. The effect of thinning on form quality of Pinus koraiensis plantations[J]. J Southwest For Univ (Nat Sci), 2021, 41(6):149-159.
[37]
龚映匀. 抚育间伐对川西柳杉人工林碳格局的影响[D]. 长沙: 中南林业科技大学, 2021.
GONG Y Y. Effect of thinning on carbon distribution of Cryptomeria fortunei plantation in western Sichuan[D]. Changsha: Central South University of Forestry & Technology, 2021.
[38]
郑颖. 辽东地区落叶松优良无性系造林密度研究[D]. 沈阳: 沈阳农业大学, 2019.
ZHENG Y. Study on afforestation density of excellent clones of Larix spp.eastern Liaoning[D]. Shenyang: Shenyang Agricultural University, 2019.
[39]
温晶. 兴安落叶松林抚育间伐效果分析[D]. 呼和浩特: 内蒙古农业大学, 2019.
WEN J. Analysis on tending thinning effect of Larix gmelinii forest[D]. Hohhot: Inner Mongolia Agricultural University, 2019.
[40]
刘晓燕. 小陇山林区抚育间伐对华山松人工林生长的影响研究[J]. 现代园艺, 2017(16): 6-7.
LIU X Y. Study on the influence of tending and thinning on the growth of Pinus armandii plantation in Xiaolongshan forest area[J]. Xiandai Hortic, 2017(16):6-7.DOI: 10.14051/j.cnki.xdyy.2017.16.002.

Footnotes

PDF(2185 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/