
Research on recognition of Camellia oleifera leaf varieties based on deep learning
YIN Xianming, JI Yu, ZHANG Riqing, MO Dengkui, PENG Shaofeng, WEI Wei
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (3) : 29-36.
Research on recognition of Camellia oleifera leaf varieties based on deep learning
【Objective】Deep learning methods are used to carry out research on Camellia oleifera based variety recognition on leaves, this study developed C. oleifera strain image recognition technology to provide scientific basis for C. oleifera variety identification.【Method】Eleven leaves of C. oleifera varieties grown under natural lighting conditions and free from pests and diseases were collected for a study. Images of the front and back of the leaves with a white cardboard background were captured using a smartphone. Invalid images were removed by usability screening, and a dataset of camellia leaf varieties with 2 791 images was constructed. Deep learning networks (GoogLeNet and ResNet) were used to identify and study the leaf images of 11 C. oleifera varieties.【Result】Both GoogLeNet and ResNet networks can meet the requirements of C. oleifera variety recognition based on leaves, with overall F1 scores of 94.0% and 80.7%. Among them, the GoogLeNet network was more effective in recognition, with average accuracy, recall, Macro F1 and Micro F1 value of 94.1%, 94.0%, 94.0% and 96.9%, respectively, and its recognition recall for two varieties, NO. 1 and 8, reached 100%.【Conclution】Deep learning networks (GoogLeNet and ResNet) can achieve C. oleifera variety recognition based on leaves, which can provide a reference for rapid leaf-based C. oleifera variety recognition.
deep learning / Camellia oleifera leaf / variety recognition / GoogLeNet / ResNet
[1] |
王金凤, 谭新建, 吴喜昌, 等. 我国油茶产业发展现状与对策建议[J]. 世界林业研究, 2020, 33(6): 80-85.
|
[2] |
李志钢, 马力, 陈永忠, 等. 我国油茶籽的综合利用现状概述[J]. 绿色科技, 2018(6): 191-194.
|
[3] |
南玉龙, 张慧春, 郑加强, 等. 深度学习在林业中的应用[J]. 世界林业研究, 2021, 34(5): 87-90.
|
[4] |
阳灵燕, 张红燕, 陈玉峰, 等. 机器学习在农作物品种识别中的应用研究进展[J]. 中国农学通报, 2020, 36(30): 158-164.
|
[5] |
周惠汝, 吴波明. 深度学习在作物病害图像识别方面应用的研究进展[J]. 中国农业科技导报, 2021, 23(5): 61-68.
|
[6] |
严恩萍, 棘玉, 尹显明, 等. 基于无人机影像自动检测冠层果的油茶快速估产方法[J]. 农业工程学报, 2021, 37(16): 39-46.
|
[7] |
余凯, 贾磊, 陈雨强, 等. 深度学习的昨天、今天和明天[J]. 计算机研究与发展, 2013, 50(9): 1799-1804.
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
韩斌, 曾松伟. 基于多特征融合和卷积神经网络的植物叶片识别[J]. 计算机科学, 2021, 48(S1): 113-117.
|
[14] |
原忠虎, 王维, 苏宝玲. 基于改进VGGNet模型的外来入侵植物叶片识别方法[J]. 计算机与现代化, 2021(9): 7-11.
|
[15] |
王建霞, 张成, 闫双双. 基于卷积神经网络的宠物猫品种分类研究[J]. 河北工业科技, 2020, 37(6): 407-412.
|
[16] |
石洪康, 田涯涯, 杨创, 等. 基于卷积神经网络的家蚕幼虫品种智能识别研究[J]. 西南大学学报(自然科学版), 2020, 42(12): 34-45.
|
[17] |
|
[18] |
杨静亚, 李景霞, 王振宇, 等. 基于卷积神经网络的花朵品种的识别[J]. 黑龙江大学工程学报, 2019, 10(4): 90-96.
|
[19] |
游嘉伟, 王斌, 曾瑞. 用于大豆品种识别的叶片深度特征学习方法[J]. 计算机系统应用, 2021, 30(10): 118-127.
|
[20] |
薄琪苇. 基于卷积神经网络的植物叶片识别研究[D]. 杭州: 浙江农林大学, 2018.
|
[21] |
孙洋. 基于Android平台的植物叶片识别系统[D]. 保定: 河北大学, 2017.
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
朱晓龙. 基于深度卷积神经网络的树木生境叶片识别方法研究[D]. 哈尔滨: 东北林业大学, 2020.
|
/
〈 |
|
〉 |