Surface soil fertility quality evaluation of green land in the Summer Palace

GE Yue, LIU Yueqiu, CONG Yipeng, HU Zhenyuan, FENG Jianing

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (3) : 182-190.

PDF(1511 KB)
PDF(1511 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (3) : 182-190. DOI: 10.12302/j.issn.1000-2006.202112044

Surface soil fertility quality evaluation of green land in the Summer Palace

Author information +
History +

Abstract

【Objective】As a famous royal garden and world cultural heritage site, monitoring and evaluating the soil quality of the Summer Palace is of great significance for maintaining and protecting the health and safety of the park ecosystem.【Method】In this study, soil surface (0-20 cm) samples from a representative vegetation coverage area in the Summer Palace were collected, and 11 evaluation indices: soil bulk density, pH, electrical conductivity, the content of the soil organic matter, total nitrogen, total phosphorus, total potassium, alkali-hydrolyzable nitrogen, available phosphorus, available potassium, and bacterial diversity were measured. The minimum data set was established using a principal component analysis, and the soil quality index was calculated using the membership function value and weight assignment method. The soil fertility quality of different vegetation coverage areas was analyzed and evaluated through a linear correlation analysis of the soil quality index of the total and minimum data sets.【Result】Using the principal component analysis method, the indices finally entered the minimum data set were total phosphorus content, electrical conductivity, bulk density, and the Shannon index. There was a significant positive correlation between the soil quality index calculated using the total and minimum data sets, and R2 was 0.877. The soil quality of the Summer Palace was divided into three levels: the soil quality of peony planting land was good (SQI≥0.80); the soil quality of deciduous broad-leaved forest, perennial flower land, and wild shrub and grass clusters was medium (0.40≤SQI<0.80); and the soil quality of trampled lawn and mixed conifer-broad-leaved forest was poor (0.20<SQI<0.40). The soil in the park was generally neutral to alkaline (pH 6.83 and 8.71), and the organic matter content was generally low (the average value was between 8.83 and 17.06 g/kg). The spatial distribution of available phosphorus was extremely unbalanced, with a coefficient of variation of 161.55%, and 76.00% of the samples were extremely deficient.【Conclusion】Human disturbance had a significant impact on the soil quality of the Summer Palace. Owing to the application of chemical fertilizers, the soil quality index in the peony planting land was high, and the soil quality in other areas was medium to low. The soil organic matter content in the park was low, and the spatial distribution of alkali-hydrolyzable nitrogen and available phosphorus was unbalanced. It is suggested that soil quality can be improved by retaining litter and applying organic and phosphorus fertilizers.

Key words

the Summer Palace / green land / soil fertility / quality evaluation / vegetation / minimum data set / soil quality index / membership function value

Cite this article

Download Citations
GE Yue , LIU Yueqiu , CONG Yipeng , et al . Surface soil fertility quality evaluation of green land in the Summer Palace[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2023, 47(3): 182-190 https://doi.org/10.12302/j.issn.1000-2006.202112044

References

[1]
GAIROLA S U, SONI P. Role of soil physical properties in ecological succession of restored mine land: a case study[J]. International Journal of Environmental Sciences, 2010, 1(4):475-480.
[2]
张华, 张甘霖. 土壤质量指标和评价方法[J]. 土壤, 2001(6):326-330,333.
ZHANG H, ZHANG G L. Indexes and estimate methods for soil quality[J]. Soils, 2001(6):326-330, 333.DOI:10.1375 8/j.cnki.tr.2001.06.011.
[3]
蔡雄飞, 李丁, 王济, 等. 基于改进模糊数学法的五马河沿岸土壤重金属污染评价[J]. 江苏农业科学, 2019, 47(1):246-250.
CAI X F, LI D, WANG J, et al. Evaluation of heavy metal pollution in soils along Wuma River based on improved fuzzy mathematics[J]. Jiangsu Agric Sci, 2019, 47(1):246-250.DOI:10.15889/j.issn.1002-1302.2019.01.058.
[4]
赵蛟, 徐梦洁, 庄舜尧, 等. 基于模糊综合评价法的建瓯市毛竹林地土壤肥力评价[J]. 土壤通报, 2018, 49(6):1428-1435.
ZHAO J, XU M J, ZHUANG S Y, et al. Evaluation of soil fertility of Phyllostachys pubescens forest in Jian’ou based on fuzzy comprehensive evaluation method[J]. Chin J Soil Sci, 2018, 49(6):1428-1435.DOI:10.19336/j.cnki.trtb.2018.06.23.
[5]
SMITH J L, HALVORSON J J, PAPENDICK R I. Using multiple-variable indicator kriging for evaluating soil quality[J]. Soil Sci Soc Am J, 1993, 57(3):743-749.DOI:10.2136/sssaj1993.03615995005700030020x.
[6]
孙蓓婷, 高超, 张燕. 基于加权Topsis法综合评价典型滩涂围垦区土壤质量演变[J]. 中国生态农业学报, 2018, 26(2):284-293.
SUN B T, GAO C, ZHANG Y. Soil quality evaluation in typical coastal reclamation zones based on weighted Topsis method[J]. Chin J Eco Agric, 2018, 26(2):284-293.DOI:10.13930/j.cnki.cjea.170711.
[7]
DORAN J W, PARKIN T B. Defining Soil Quality for a Sustainable Environment. Vol.35[M]. Modison, WI: Soil Science Society of America (SSSA), 1994, 35:1-21.DOI:10.2136/sssaspecpub35.c1.
[8]
邓绍欢, 曾令涛, 关强, 等. 基于最小数据集的南方地区冷浸田土壤质量评价[J]. 土壤学报, 2016, 53(5):1326-1333.
DENG S H, ZENG L T, GUAN Q, et al. Minimum dataset-based soil quality assessment of waterlogged paddy field in South China[J]. Acta Pedol Sin, 2016, 53(5):1326-1333.DOI:10.11766/trxb201509070316.
[9]
李桂林, 陈杰, 檀满枝, 等. 基于土地利用变化建立土壤质量评价最小数据集[J]. 土壤学报, 2008, 45(1):16-25.
LI G L, CHEN J, TAN M Z, et al. Establishment of a minimum dataset for soil quality assessment based on land use change[J]. Acta Pedol Sin, 2008, 45(1):16-25.DOI:10.11766/trxb200610020103.
[10]
张娟, 田宇, 王艳春. 颐和园土壤肥力特征分析[C]// 2014“城市园林绿化与和谐宜居之都建设”学术论坛暨学会成立50周年纪念大会论文集. 北京: 科学技术文献出版, 2014:417-421.
ZHANG J, TIAN Y, WANG Y C. Analysis of Soil Fertility Characteristics of Summer Palace[C]// 2014“Urban Landscaping and Harmony and Imitting Bocal Construction”Academic Forum and Society Established 50 Anniversary Conference Papers. Beijing: Science and Technology Documentation Pres, 2014:417-421.
[11]
刘克锋, 王静, 王衍庆, 等. 北京市十大公园土壤性状及其改良利用的研究[J]. 北京农学院学报, 1994, 9(2):25-44.
LIU K F, WANG J, WANG Y Q, et al. Studies on soil characteristics and improvement & utilization of ten major gardens in Beijing[J]. J Beijing Agric Coll, 1994, 9(2):25-44.DOI:10.13473/j.cnki.issn.1002-3186.1994.02.005.
[12]
吴建芝, 王艳春, 田宇, 等. 北京市公园和道路绿地土壤重金属含量特征比较研究[C]// 2016北京园林绿化建设与发展. 北京: 科学技术文献出版社, 2016:206-210.
WU J Z, WANG Y C, TIAN Y, et al. Comparative Study on Characteristics of Soil Heavy Metal Content in Beijing Park and Road Green Space[C]// 2016 Beijing landscaping construction and development. Beijing: Science and Technology Documentation Press, 2016:206-210.
[13]
胡振园, 许蕊, 丛一蓬. 颐和园湿地生态系统健康评价研究[J]. 湿地科学与管理, 2020, 16(2):27-31.
HU Z Y, XU R, CONG Y P. Assessment of wetland ecosystem health in the Summer Palace[J]. Wetl Sci Manag, 2020, 16(2):27-31.DOI:10.3969/j.issn.1673-3290.2020.02.06.
[14]
鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000:30-183.
BAO S D. Soil and Agricultural Chemistry Analysis[M]. 3rd ed. Beijing: Chinese Agriculture Press, 2000:30-183.
[15]
娄义宝, 史东梅, 蒋光毅, 等. 基于最小数据集的紫色丘陵区坡耕地耕层土壤质量评价[J]. 中国水土保持科学, 2019, 17(5):75-85.
LOU Y B, SHI D M, JIANG G Y, et al. Evaluation of soil quality in the cultivated-layer of sloping farmland in purple hilly area based on minimum data set[J]. Sci Soil Water Conserv, 2019, 17(5):75-85.DOI:10.16843/j.sswc.2019.05.009.
[16]
姜龙群, 侯贵廷, 黄淇, 等. 基于因子分析和最小数据集的土壤养分评价:以房山平原区为例[J]. 土壤通报, 2018, 49(5):1034-1040.
JIANG L Q, HOU G T, HUANG Q, et al. Evaluation of soil fertility quality with a minimum data set and factor analysis in the Fangshan plain of Beijing[J]. Chin J Soil Sci, 2018, 49(5):1034-1040.DOI:10.19336/j.cnki.trtb.2018.05.04.
[17]
KARLEN D L, STOTT D E. A framework for evaluating physical and chemical indicators of soilquality[J]. Defining Soil Quality for a Sustainable Environment, 1994, 35: 53-72. DOI:10.2136/sssaspecpub35.c4.
[18]
GUO L L, SUN Z G, OUYANG Z, et al. A comparison of soil quality evaluation methods for Fluvisol along the lower Yellow River[J]. Catena, 2017, 152:135-143.DOI:10.1016/j.catena.2017.01.015.
[19]
卢立华, 冯益明, 农友, 等. 基于林班尺度的森林立地类型划分与质量评价[J]. 林业资源管理, 2018(2):48-57.
LU L H, FENG Y M, NONG Y, et al. Classification and quality evaluation of forest site types by using compartments as the research scale[J]. For Resour Manag, 2018(2):48-57.DOI:10.13466/j.cnki.lyzygl.2018.02.010.
[20]
北京市园林绿化局. 园林绿化种植土壤技术要求:DB11/T 864-2020[S]. 北京: 北京市市场监督管理局, 2020:5.
Beijing Munieipal Forestry and Parks Bureau. Soil requirements for landscaping use:DB/T 864-2020.[S]. Beijing: Beijing Municipal Administration of Market Supervision, 2020:5.
[21]
国土资源部. 土地质量地球化学评价规:DZ/T 029-2016[S]. 北京: 中华人民共和国国土资源部, 2016:42.
MOLR. Specification of land quality geochemical assessment:DZ/T 029-2016[S]. Beijing: Ministry of Land and Resources of the People’s Republic of China, 2016:42.
[22]
刘艳. 北京市崇文区绿地表层土壤质量研究与评价[D]. 北京: 中国林业科学研究院, 2009:46.
LIU Y. Soil quality and its assessment in green areas of Chongwen district of Beijing[D]. Beijing: Chinese Academy of Forestry, 2009:46.
[23]
史东梅, 江娜, 蒋光毅, 等. 紫色土坡耕地耕层质量影响因素及其敏感性分析[J]. 农业工程学报, 2020, 36(3):135-143.
SHI D M, JIANG N, JIANG G Y, et al. Influencing factors and sensitivity analysis of cultivated-layer quality of purple soil slope farmland[J]. Trans Chin Soc Agric Eng, 2020, 36(3):135-143.DOI:10.11975/j.issn.1002-6819.2020.03.017.
[24]
狄晓双, 武红旗, 贾宏涛, 等. 新疆主要草地土壤容重与有机碳含量关系模型构建[J]. 土壤通报, 2021, 52(6):1323-1329.
DI S X, WU H Q, JIA H T, et al. Construction of relationship model between soil bulk density and soil organic carbon content of main grasslands in Xinjiang[J]. Chin J Soil Sci, 2021, 52(6):1323-1329.DOI:10.19336/j.cnki.trtb.2020101203.
[25]
杨玉敏, 师学义, 张琛. 基于内梅罗指数法的复垦村庄土壤重金属污染评价及空间分布[J]. 水土保持研究, 2016, 23(4):338-343.
YANG Y M, SHI X Y, ZHANG C. Spatial distribution and evaluation of heavy metal pollution of reclaiming village based on nemerow integrated pollution index method[J]. Res Soil Water Conserv, 2016, 23(4):338-343.DOI:10.13869/j.cnki.rswc.2016.04.043.
[26]
余林, 徐海宁, 肖复明. 不同施肥毛竹林土壤质量的灰色关联分析[J]. 南方林业科学, 2018, 46(3):1-4.
YU L, XU H N, XIAO F M. Grey relation analysis of soil quality of Phyllostachys edulis stands at different fertilization[J]. South China For Sci, 2018, 46(3):1-4.DOI:10.16259/j.cnki.36-1342/s.2018.03.001.
[27]
解雪峰, 濮励杰, 朱明, 等. 基于MDS与TOPSIS模型的滨海滩涂围垦区土壤质量评价[J]. 环境科学, 2019, 40(12):5484-5492.
XIE X F, PU L J, ZHU M, et al. Assessment of soil quality in coastal tidal flat reclamation areas based on MDS-TOPSIS model[J]. Environ Sci, 2019, 40(12):5484-5492.DOI:10.13227/j.hjkx.201905129.
[28]
余健, 房莉, 仓定帮, 等. 熵权模糊物元模型在土地生态安全评价中的应用[J]. 农业工程学报, 2012, 28(5):260-266.
YU J, FANG L, CANG D B, et al. Evaluation of land eco-security in Wanjiang district base on entropy weight and matter element model[J]. Trans Chin Soc Agric Eng, 2012, 28(5):260-266.DOI:10.3969/j.issn.1002-6819.2012.05.043.
[29]
梅楠, 谷岩, 李德忠, 等. 基于最小数据集的吉林省黑土耕层土壤质量评价[J]. 农业工程学报, 2021, 37(12):91-98.
MEI N, GU Y, LI D Z, et al. Soil quality evaluation in topsoil layer of black soil in Jilin Province based on minimum data set[J]. Trans Chin Soc Agric Eng, 2021, 37(12):91-98.DOI:10.11975/j.issn.1002-6819.2021.12.011.
[30]
金慧芳, 史东梅, 陈正发, 等. 基于聚类及PCA分析的红壤坡耕地耕层土壤质量评价指标[J]. 农业工程学报, 2018, 34(7):155-164.
JIN H F, SHI D M, CHEN Z F, et al. Evaluation indicators of cultivated layer soil quality for red soil slope farmland based on cluster and PCA analysis[J]. Trans Chin Soc Agric Eng, 2018, 34(7):155-164.DOI:10.11975/j.issn.1002-6819.2018.07.020.
[31]
欧芷阳, 申文辉, 庞世龙, 等. 平果喀斯特山地不同植物群落的土壤质量评价[J]. 生态学杂志, 2015, 34(10):2771-2777.
OU Z Y, SHEN W H, PANG S L, et al. Assessment of soil quality of different plant communities in the Karst mountains of Pingguo County,Guangxi[J]. Chin J Ecol, 2015, 34(10):2771-2777.DOI:10.13292/j.1000-4890.2015.0258.
[32]
SVORAY T, HASSID I, ATKINSON P M, et al. Mapping soil health over large agriculturally important areas[J]. Soil Sci Soc Am J, 2015, 79(5):1420-1434.DOI:10.2136/sssaj2014.09.0371.
[33]
张沛, 李毅, 商艳玲. 偏最小二乘回归方法提取土壤质量单项评价指标初探[J]. 灌溉排水学报, 2015, 34(5):72-78.
ZHANG P, LI Y, SHANG Y L. Extraction of single soil quality index by partial least squares regression method[J]. J Irrigation Drainage, 2015, 34(5):72-78.DOI:10.13522/j.cnki.ggps.2015.05.015.
[34]
李辰, 陈颢明, 胡亦舒, 等. 富磷生物炭协助溶磷细菌对Cu的修复机制[J]. 生物加工过程, 2022, 20(6):658-664.
LI C, CHEN H M, HU Y S, et al. Cu remediation by phosphate solubilizing bacteria assisted with phosphorus-rich biochar[J]. Chi J Biop Eng, 2022, 20(6):658-664.DOI:10.3969/j.issn.1672-3678.2022.06.008
[35]
DELGADO-BAQUERIZO M, REICH P B, TRIVEDI C, et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes[J]. Nat Ecol Evol, 2020, 4(2):210-220.DOI:10.1038/s41559-019-1084-y.
[36]
CHEN C F, LIU W J, JIANG X J, et al. Effects of rubber-based agroforestry systems on soil aggregation and associated soil organic carbon:implications for land use[J]. Geoderma, 2017, 299:13-24.DOI:10.1016/j.geoderma.2017.03.021.
[37]
朱梓弘, 朱同彬, 杨霖, 等. 中国土壤碱解氮含量与影响因子的空间关系研究[J]. 生态环境学报, 2019, 28(11):2199-2207.
ZHU Z H, ZHU T B, YANG L, et al. The spatial relationship between soil alkeline-nitrogen content and environmental factors in China[J]. Ecol Environ Sci, 2019, 28(11):2199-2207.DOI:10.16258/j.cnki.1674-5906.2019.11.008.
[38]
张微微, 周怀平, 黄绍敏, 等. 长期不同施肥模式下碱性土有效磷对磷盈亏的响应[J]. 植物营养与肥料学报, 2021, 27(2):263-274.
ZHANG W W, ZHOU H P, HUANG S M, et al. Response of alkaline soil Olsen-P to phosphorous budget under different long-term fertilization treatments[J]. J Plant Nutr Fertil, 2021, 27(2):263-274.DOI:10.11674/zwyf.20325.
PDF(1511 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/