
The effect of organic matter addition on soil respiration and carbon component in Pinus tabuliformis forests in Taiyue Mountain, Shanxi Province, China
SUN Meijia, ZHOU Zhiyong, WANG Yongqiang, SHEN Ying, XIA Wei
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (1) : 67-75.
The effect of organic matter addition on soil respiration and carbon component in Pinus tabuliformis forests in Taiyue Mountain, Shanxi Province, China
【Objective】 This research aims to investigate the effects of different organic matters on soil organic carbon and soil respiration in Pinus tabuliformis forest. The results can provide reference for predicting soil carbon budget of P. tabuliformis forest ecosystem in Taiyue Mountain, Shanxi Province, China.【Method】A random block design was used to add biochar (BC), maize straw (JG), Quercus mongolica leaf (LD) and P. tabuliformis leaf (YS) to 0-20 cm soil of P. tabuliformis forest in Taiyue Mountain, with no addition as control check (CK). Li-8100 automatic measurement system for CO2 flux was used to continuously measure soil respiration rate under organic matter addition, and the contents of soil organic carbon (SOC), microbial biomass carbon (MBC), readily oxidized carbon (ROC) and dissolved organic carbon (DOC) in each treatment were monitored. Based on the relationship between soil respiration and soil organic carbon and its components, the effects of organic matter addition on soil respiration and soil carbon components of P. tabuliformis forest in Taiyue Mountain were investigated. 【Result】 (1)The addition of biochar significantly reduced the soil respiration rate, and the soil respiration rate was significantly increased by 11.67% after adding JG compared with CK, while there was no significant difference between other treatments and CK. (2)In August 2014, the addition of JG significantly increased the soil SOC, MBC, ROC and DOC contents, the addition of BC significantly increased the soil MBC content, and the addition of LD and YS significantly increased the soil SOC and MBC contents. In October 2014, the addition of JG significantly increased soil SOC, MBC, ROC and DOC contents, the addition of LD significantly increased soil MBC and ROC contents, and the addition of YS significantly increased soil SOC and MBC contents. In March 2015, the addition of JG significantly increased soil SOC, MBC and ROC contents, while the addition of LD significantly increased soil ROC contents. In May 2015, JG supplementation significantly increased soil MBC content.(3) Compared with CK, soil respiration at 10 (R10) was significantly decreased by 18.01% after BC addition, and increased by 30.88% after YS leaf addition. Other organic compounds had no significant effect on soil respiration temperature sensitivity (Q10) and R10. (4) Soil respiration rate was significantly positively correlated with soil temperature, SOC, MBC, ROC and DOC. 【Conclusion】 The addition of organic matter significantly affected soil carbon dynamics and soil temperature and humidity, which all had significant effects on soil CO2 emissions. The addition of JG had the most significant effect on soil organic carbon and its carbon components, but the soil respiration rate was the highest, which was not conducive to carbon storage. The addition of LD could increase soil active organic carbon content and significantly improve soil organic carbon pool quality in a short term, while the addition of BC could increase soil microbial biomass carbon content in a short term, and significantly reduce soil respiration rate, which has the best effect on reducing soil CO2 emission.
organic matter / soil respiration / soil organic carbon / soil active organic carbon
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
陈嘉慧, 钱叶, 侯怡铃, 等. 不同年龄段银杏树根系土壤微生物群落功能多样性分析[J]. 生物加工过程, 2021, 19(1):85-90.
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
许菽敉, 张欢, 赵洪涛, 等. 太岳山3种林型碳储量及其空间分配格局[J]. 福建农林大学学报(自然科学版), 2018, 47
|
[14] |
迟璐, 王百田, 曹晓阳, 等. 山西太岳山主要森林生态系统碳储量与碳密度[J]. 东北林业大学学报, 2013, 41(8): 32-35.
|
[15] |
李克让, 王绍强, 曹明奎. 中国不同森林类型碳储量[J]. 中国科学: D辑, 2003, 33(1): 72-80.
|
[16] |
鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
|
[17] |
|
[18] |
|
[19] |
|
[20] |
杨苏, 李传哲, 王静, 等. 有机物料投入对作物产量及潮土固碳的影响[J]. 江苏农业学报, 2020, 36(3):569-576.
|
[21] |
何伟, 王会, 韩飞, 等. 长期施用有机肥显著提升潮土有机碳组分[J]. 土壤学报, 2020, 57(2):425-434.
|
[22] |
|
[23] |
|
[24] |
|
[25] |
黄尚书, 成艳红, 钟义军, 等. 水土保持措施对红壤缓坡地土壤活性有机碳及酶活性的影响[J]. 土壤学报, 2016, 53(2):468-476.
|
[26] |
张瑞, 张贵龙, 姬艳艳, 等. 不同施肥措施对土壤活性有机碳的影响[J]. 环境科学, 2013, 34(1): 277-282.
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
易志刚, 蚁伟民, 周国逸, 等. 鼎湖山三种主要植被类型土壤碳释放研究[J]. 生态学报, 2003, 23(8): 1673-1678.
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
魏书精, 罗碧珍, 孙龙, 等. 森林生态系统土壤呼吸时空异质性及影响因子研究进展[J]. 生态环境学报, 2013, 22(4): 689-704.
|
[38] |
39 MEYER N, WELP G, AMELUNG W. The temperature sensitivity (Q10) of soil respiration:controlling factors and spatial prediction at regional scale based on environmental soil classes[J]. Glob Biogeochem Cycles, 2018, 32(2): 306-323. DOI: 10.1002/2017GB005644.
|
[40] |
郑甲佳, 黄松宇, 贾昕, 等. 中国森林生态系统土壤呼吸温度敏感性空间变异特征及影响因素[J]. 植物生态学报, 2020, 44(6): 687-698.
土壤呼吸的温度敏感性(Q10)是陆地碳循环与气候系统间相互作用的关键参数。尽管已有大量关于不同类型森林土壤呼吸Q10季节和年际变化规律的研究,但是对Q10在区域尺度的空间变异特征及其影响因素仍认识不足,已有结果缺乏一致结论。本研究通过整合已发表论文,构建了中国森林生态系统年尺度Q10数据集,共包含399条记录、5种森林类型(落叶阔叶林DBF、落叶针叶林DNF、常绿阔叶林EBF、常绿针叶林ENF、混交林MF)。分析了不同森林类型土壤呼吸Q10的空间变异特征及其与地理、气候和土壤因素的关系。结果显示,1)Q10介于1.09到6.24之间,平均值(±标准误)为2.37 ± 0.04,且在不同森林类型之间无显著差异;2)当考虑所有森林类型时,Q10随纬度、海拔、土壤有机碳(SOC)和土壤全氮(TN)的增加而增大,随经度、年平均气温(MAT)、年平均降水量(MAP)的增加而减小。气候(MAT、MAP)和土壤(SOC、TN)因素间存在相互作用,共同解释了33%的Q10空间变异,其中MAT和SOC是Q10空间变异的主要驱动因素;3)不同类型森林土壤呼吸Q10对气候和土壤因素的响应存在差异。在DNF中Q10随MAP的增加而减小,而其他类型森林中Q10与MAP无显著相关性;在EBF、DBF、ENF中Q10随TN的增加而增大,但Q10对TN的敏感性在EBF中最高,在ENF中最低。这些结果表明,尽管Q10有一定的集中分布趋势,但仍有较大范围的空间变异,在进行碳收支估算时应注意尺度问题。Q10的主要驱动因素和对环境因素的响应随森林类型而变化,在气候变化情景下,不同森林类型间Q10可能发生分异。因此,未来的碳循环–气候模型还应考虑不同类型森林碳循环关键参数对气候变化的响应差异。
|
/
〈 |
|
〉 |