Comprehensive analysis of WRKY gene family in Sedum plumbizincicola responding to cadmium stress

WANG Jianchao, QIU Wenmin, JIN Kangming, LU Zhuchou, HAN Xiaojiao, ZHUO Renying, LIU Xiaoguang, HE Zhengquan

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (2) : 49-60.

PDF(5220 KB)
PDF(5220 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (2) : 49-60. DOI: 10.12302/j.issn.1000-2006.202201015

Comprehensive analysis of WRKY gene family in Sedum plumbizincicola responding to cadmium stress

Author information +
History +

Abstract

【Objective】 WRKY transcription factors play important regulatory roles for a plant abiotic stress response. However, little information is available about WRKY transcription factors in the hyperaccumulating plant Sedum plumbizincicola. The identification of SpWRKY gene family members and analysis of their expression patterns under cadmium stress can provide a reference for molecular cloning of SpWRKYs gene and functional characterization of cadmium tolerance.【Method】 In this study, the genome-wide identification and bioinformatics analysis of WRKY gene family members were carried out. Expression patterns of WRKY genes under cadmium stress were derived from transcriptome data and qPCR, and the roles of SpWRKY69 in cadmium tolerance were assessed by the heterologous expression in Arabidopsis thaliana.【Result】 There were 77 SpWRKYs identified in S. plumbizincicola, unevenly distributed on the chromosomes. Based on the phylogenetic analysis, the SpWRKY proteins were classified into three groups (Ⅰ-Ⅲ), among which the second group was further divided into five subgroups (Ⅱa-e). The synteny analysis showed that there were seven collinear gene pairs in the S. plumbizincicola and A. thaliana WRKY gene family and 53 collinear gene pairs for Kalanchoe fedtschenkoi; 19 pairs of SpWRKYs were identified as the segmental duplication. Cis-regulatory elements related to stress and hormone responses were found in the promoters of SpWRKYs. The expression profiles showed that the expression levels of the seven SpWRKYs were significantly up-regulated under cadmium stress, exhibiting a pattern of increasing initially and then decreasing. Over-expression of SpWRKY69 in A. thaliana showed that SpWRKY69 can enhance the transport rate of Cd ions to the shoot and play a negative role in regulating plant cadmium tolerance.【Conclusion】 Structural features of WRKY gene family members in S. plumbizincicola are similar to those of other species, and the fragment duplication is one of the main evolutionary forces. The relative expression levels of some members change significantly under cadmium stress, and SpWRKY69 can increase the transport rate of Cd ions to the shoot, and so other WRKY members may also be involved in the regulation of plant cadmium tolerance. These results provide a foundation for further functional characterization of SpWRKYs related to Cd tolerance.

Key words

Sedum plumbizincicola / WRKY transcription factor / cadmium stress / gene expression / Arabidopsis transformation

Cite this article

Download Citations
WANG Jianchao , QIU Wenmin , JIN Kangming , et al . Comprehensive analysis of WRKY gene family in Sedum plumbizincicola responding to cadmium stress[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2023, 47(2): 49-60 https://doi.org/10.12302/j.issn.1000-2006.202201015

References

[1]
ISHIGURO S, NAKAMURA K. Characterization of a cDNA encoding a novel DNA-binding protein,SPF1,that recognizes SP8 sequences in the 5’ upstream regions of genes coding for sporamin and β-amylase from sweet potato[J]. Molec Gen Genet, 1994, 244(6):563-571.DOI:10.1007/BF00282746.
[2]
EULGEM T, RUSHTON P J, ROBATZEK S, et al. The WRKY superfamily of plant transcription factors[J]. Trends Plant Sci, 2000, 5(5):199-206.DOI:10.1016/S1360-1385(00)01600-9.
[3]
WANG L N, ZHU W, FANG L C, et al. Genome-wide identification of WRKY family genes and their response to cold stress in Vitis vinifera[J]. BMC Plant Biol, 2014, 14:103.DOI:10.1186/1471-2229-14-103.
[4]
REN C M, ZHU Q, GAO B D, et al. Transcription factor WRKY70 displays important but no indispensable roles in jasmonate and salicylic acid signaling[J]. J Integr Plant Biol, 2008, 50(5):630-637.DOI:10.1111/j.1744-7909.2008.00653.x.
[5]
GUILLAUMIE S, MZID R, MÉCHIN V, et al. The grapevine transcription factor WRKY2 influences the lignin pathway and xylem development in tobacco[J]. Plant Mol Biol, 2010, 72(1):215.DOI:10.1007/s11103-009-9563-1.
[6]
JIANG C H, HUANG Z Y, XIE P, et al. Transcription factors WRKY70 and WRKY11 served as regulators in rhizobacterium Bacillus cereus AR156-induced systemic resistance to Pseudomonas syringae pv.tomato DC3000 in Arabidopsis[J]. J Exp Bot, 2015, 67(1):157-174.DOI:10.1093/jxb/erv445.
[7]
SHENG Y B, YAN X X, HUANG Y, et al. The WRKY transcription factor,WRKY13,activates PDR8 expression to positively regulate cadmium tolerance in Arabidopsis[J]. Plant Cell Environ, 2019, 42(3):891-903.DOI:10.1111/pce.13457.
[8]
TAO Z, KOU Y J, LIU H B, et al. OsWRKY45 alleles play different roles in abscisic acid signalling and salt stress tolerance but similar roles in drought and cold tolerance in rice[J]. J Exp Bot, 2011, 62(14):4863-4874.DOI:10.1093/jxb/err144.
[9]
CHU X Q, WANG C, CHEN X B, et al. The cotton WRKY gene GhWRKY41 positively regulates salt and drought stress tolerance in transgenic Nicotiana benthamiana[J]. PLoS One, 2015, 10(11):e0143022.DOI:10.1371/journal.pone.0143022.
[10]
LIU Z Q, FANG H H, PEI Y X, et al. WRKY transcription factors down-regulate the expression of H2S-generating genes,LCD and DES in Arabidopsis thaliana[J]. Sci Bull, 2015, 60(11):995-1001.DOI:10.1007/s11434-015-0787-y.
[11]
SUN Y D, YU D Q. Activated expression of AtWRKY53 negatively regulates drought tolerance by mediating stomatal movement[J]. Plant Cell Rep, 2015, 34(8):1295-1306.DOI:10.1007/s00299-015-1787-8.
[12]
中国生态环境部. 2014全国土壤污染状况调查公报[EB/OL].(2014-04-17)[2021-10-12]. https://www.mee.gov.cn/gkml/sthjbgw/qt/201404/t20140417_270670.htm.
[13]
LANE T W, MOREL F M. A biological function for cadmium in marine diatoms[J]. Proc Natl Acad Sci USA, 2000, 97(9):4627-4631.DOI:10.1073/pnas.090091397.
[14]
ANDRESEN E, KÜPPER H. Cadmium toxicity in plants[J]. Met Ions Life Sci, 2013, 11:395-413.DOI:10.1007/978-94-007-5179-8_13.
[15]
RODRÍGUEZ-SERRANO M, ROMERO-PUERTAS M C, PAZMIÑO D M, et al. Cellular response of pea plants to cadmium toxicity:cross talk between reactive oxygen species,nitric oxide,and calcium[J]. Plant Physiol, 2009, 150(1):229-243.DOI:10.1104/pp.108.131524.
[16]
CHENG S P. Effects of heavy metals on plants and resistance mechanisms.A state-of-the-art report with special reference to literature published in Chinese journals[J]. Environ Sci Pollut Res Int, 2003, 10(4):256-264.DOI:10.1065/espr2002.11.141.2.
[17]
FAROON O, ASHIZAWA A, WRZAHJ S, et al. Toxicological profile for cadmium[R]. Cleveland: USA. US Department of Energy, 1989.
[18]
MUSZYNSKA E, HANUS-FAJERSKA E. Why are heavy metal hyperaccumulating plants so amazing?[J]. BioTechnologia, 2015, 4:265-271.DOI:10.5114/bta.2015.57730.
[19]
LI J T, GURAJALA H K, WU L H, et al. Hyperaccumulator plants from China:a synthesis of the current state of knowledge[J]. Environ Sci Technol, 2018, 52(21):11980-11994.DOI:10.1021/acs.est.8b01060.
[20]
PENG J S, WANG Y J, DING G, et al. A pivotal role of cell wall in cadmium accumulation in the Crassulaceae hyperaccumulator Sedum plumbizincicola[J]. Mol Plant, 2017, 10(5):771-774.DOI:10.1016/j.molp.2016.12.007.
[21]
XU D, LU Z C, JIN K M, et al. SPDE:a multi-functional software for sequence processing and data extraction[J]. Bioinformatics, 2021, 37(20):3686-3687.DOI:10.1093/bioinformatics/btab235.
[22]
EDGAR R C. MUSCLE:Multiple sequence alignment with high accuracy and high throughput[J]. Nucleic Acids Res, 2004, 32(5):1792-1797.DOI:10.1093/nar/gkh340.
[23]
WATERHOUSE A M, PROCTER J B, MARTIN D M A, et al. Jalview Version 2: a multiple sequence alignment editor and analysis workbench[J]. Bioinformatics, 2009, 25(9):1189-1191.DOI:10.1093/bioinformatics/btp033.
[24]
KUMAR S, STECHER G, LI M, et al. MEGA X:molecular evolutionary genetics analysis across computing platforms[J]. Mol Biol Evol, 2018, 35(6):1547-1549.DOI:10.1093/molbev/msy096.
[25]
ZHANG H K, GAO S H, LERCHER M J, et al. EvolView,an online tool for visualizing,annotating and managing phylogenetic trees[J]. Nucleic Acids Res, 2012, 40(W1):W569-W572.DOI:10.1093/nar/gks576.
[26]
CHEN C J, CHEN H, ZHANG Y, et al. TBtools:an integrative toolkit developed for interactive analyses of big biological data[J]. Mol Plant, 2020, 13(8):1194-1202.DOI:10.1016/j.molp.2020.06.009.
[27]
LESCOT M, DÉHAIS P, THIJS G, et al. PlantCARE,a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Res, 2002, 30(1):325-327.DOI:10.1093/nar/30.1.325.
[28]
WANG Y P, TANG H B, DEBARRY J D, et al. MCScanX:a toolkit for detection and evolutionary analysis of gene synteny and collinearity[J]. Nucleic Acids Res, 2012, 40(7):e49.DOI:10.1093/nar/gkr1293.
[29]
HAN X J, YIN H F, SONG X X, et al. Integration of small RNAs,degradome and transcriptome sequencing in hyperaccumulator Sedum alfredii uncovers a complex regulatory network and provides insights into cadmium phytoremediation[J]. Plant Biotechnol J, 2016, 14(6):1470-1483.DOI:10.1111/pbi.12512.
[30]
SHANNON P, MARKIEL A, OZIER O, et al. Cytoscape:a software environment for integrated models of biomolecular interaction networks[J]. Genome Res, 2003, 13(11):2498-2504.DOI:10.1101/gr.1239303.
[31]
CLOUGH S J, BENT A F. Floral dip:a simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana[J]. Plant J, 1998, 16(6):735-743.DOI:10.1046/j.1365-313x.1998.00343.x.
[32]
SAMBROOK J, FRITSCH E, MANIATIS T. Molecular cloning:a laboratory manual[J]. Trends Biotechnol, 1991, 9(1): 213-214.
[33]
ALVAREZ M E, PENNELL R I, MEIJER P J, et al. Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity[J]. Cell, 1998, 92(6):773-784.DOI:10.1016/S0092-8674(00)81405-1.
[34]
WOHLGEMUTH H, MITTELSTRASS K, KSCHIESCHAN S, et al. Activation of an oxidative burst is a general feature of sensitive plants exposed to the air pollutant ozone[J]. Plant Cell Environ, 2002, 25(6):717-726.DOI:10.1046/j.1365-3040.2002.00859.x.
[35]
罗夏琳, 胡玉斐, 李攻科. 微波辅助消解-电感耦合等离子体原子发射光谱测定烟草中的重金属[J]. 分析科学学报, 2016, 32(2):249-252.DOI:10.13526/j.issn.1006-6144.2016.02.020.
LUO X L, HU Y F, LI G K. Determination of heavy metals in tobaccos by microwave-assisted digestion-inductively coupled plasma-optical emission spectrometry[J]. J Anal Sci, 2016, 32(2):249-252.DOI:10.13526/j.issn.1006-6144.2016.02.020.
[36]
ÜLKER B, SOMSSICH I E. WRKY transcription factors:from DNA binding towards biological function[J]. Curr Opin Plant Biol, 2004, 7(5):491-498.DOI:10.1016/j.pbi.2004.07.012.
[37]
RUSHTON P J, SOMSSICH I E, RINGLER P, et al. WRKY transcription factors[J]. Trends Plant Sci, 2010, 15(5):247-258.DOI:10.1016/j.tplants.2010.02.006.
[38]
KIM C Y, ZHANG S Q. Activation of a mitogen-activated protein kinase cascade induces WRKY family of transcription factors and defense genes in tobacco[J]. Plant J, 2004, 38(1):142-151.DOI:10.1111/j.1365-313x.2004.02033.x.
[39]
XIE Z, ZHANG Z L, ZOU X L, et al. Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells[J]. Plant Physiol, 2005, 137(1):176-189.DOI:10.1104/pp.104.054312.
[40]
GUPTA S, MISHRA V K, KUMARI S, et al. Deciphering genome-wide WRKY gene family of Triticum aestivum L[J]. Genes Genom, 2019, 41(1):79-94.DOI:10.1007/s13258-018-0742-9.
[41]
XIE T, CHEN C J, LI C H, et al. Genome-wide investigation of WRKY gene family in pineapple:evolution and expression profiles during development and stress[J]. BMC Genom, 2018, 19(1):490.DOI:10.1186/s12864-018-4880-x.
[42]
DONG J X, CHEN C H, CHEN Z X. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response[J]. Plant Mol Biol, 2003, 51(1):21-37.DOI:10.1023/a:1020780022549.
[43]
CHRISTIAN A, YUE R, LIU Q, et al. The WRKY gene family in rice (Oryza sativa)[J]. J Integr Plant Biol, 2007(6):827-842.DOI:10.1111/j.1744-7909.2007.00504.x.
[44]
YANG B, JIANG Y Q, RAHMAN M H, et al. Identification and expression analysis of WRKY transcription factor genes in canola (Brassica napus L.) in response to fungal pathogens and hormone treatments[J]. BMC Plant Biol, 2009, 9:68.DOI:10.1186/1471-2229-9-68.
[45]
TIIKA R J, WEI J, MA R, et al. Identification and expression analysis of the WRKY gene family during different developmental stages in Lycium ruthenicum Murr.fruit[J]. Peer J, 2020, 8:e10207.DOI:10.7717/peerj.10207.
[46]
WANG D, CHEN Q Y, CHEN W W, et al. A WRKY transcription factor,EjWRKY17,from Eriobotrya japonica enhances drought tolerance in transgenic Arabidopsis[J]. Int J Mol Sci, 2021, 22(11):5593.DOI:10.3390/ijms22115593.
[47]
DANG F F, LIN J H, CHEN Y P, et al. A feedback loop between CaWRKY41 and H2O2 coordinates the response to Ralstonia solanacearum and excess cadmium in pepper[J]. J Exp Bot, 2019, 70(5):1581-1595.DOI:10.1093/jxb/erz006.
[48]
CAI Z D, XIAN P Q, WANG H, et al. Transcription factor GmWRKY142 confers cadmium resistance by up-regulating the cadmium tolerance 1-like genes[J]. Front Plant Sci, 2020, 11:724.DOI:10.3389/fpls.2020.00724.
PDF(5220 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/