Verification of performance of understory terrain inversion from spaceborne lidar GEDI data

DONG Hanyuan, YU Ying, FAN Wenyi

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (2) : 141-149.

PDF(2617 KB)
PDF(2617 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (2) : 141-149. DOI: 10.12302/j.issn.1000-2006.202201041

Verification of performance of understory terrain inversion from spaceborne lidar GEDI data

Author information +
History +

Abstract

【Objective】 The new generation of the space-based altimetry global ecosystem dynamics investigation (GEDI) system is of great significance to forest observation and management. In order to explore the performance of GEDI version 2 data (V2 data) inversion of understory topography, this study uses airborne radar data to verify the accuracy of understory topography inversion, and explores the factors affecting the accuracy.【Method】 Taking the Cibola forest in the United States and the Maoer Mountain forest in China as the research objects, the performances of GEDI V2 data in coniferous forests and mixed coniferous and broad-leaved forests were verified using G-liht and Maoer Mountain high-precision airborne radar data. The effects of different beam intensities, spot times, slopes and vegetation coverage on the accuracy of terrain inversion were analyzed.【Result】 The root mean square error (RMSE) of topographic inversion accuracy in the Cibola taiga area of the United States was 2.33 m, and the average absolute error (MAE) was 1.48 m. The RMSE value of the topographic inversion accuracy in the coniferous and broad-leaved mixed forest area of Maoer Mountain was 4.49 m, and the MAE value was 3.33 m. With the increase in slope and vegetation coverage, the topographic inversion accuracy of the two forest types decreased.【Conclusion】 The GEDI V2 data inversion accuracy of understory topography in coniferous forests was higher than that of mixed coniferous and broad-leaved forests. Strong beams were better than coverage beams, and the accuracy was higher during the daytime in humid areas, and better at night in arid areas. The accuracy of steep areas was reduced, the terrain inversion accuracy was higher in areas with medium and low vegetation coverage, and the performances of terrain determination in areas with high vegetation coverage were decreased.

Key words

spaceborne lidar / global ecosystem dynamics investigation (GEDI) / terrain under forest / inversion accuracy / slope / vegetation coverage

Cite this article

Download Citations
DONG Hanyuan , YU Ying , FAN Wenyi. Verification of performance of understory terrain inversion from spaceborne lidar GEDI data[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2023, 47(2): 141-149 https://doi.org/10.12302/j.issn.1000-2006.202201041

References

[1]
蒋有绪. 世界森林生态系统结构与功能的研究综述[J]. 林业科学研究, 1995, 8(3): 314-321.
JIANG Y X. On study of structure and function of world forest ecosystem[J]. Forest Res, 1995, 8(3): 314-321.
[2]
LONG T F, ZHANG Z M, HE G J, et al. 30 m resolution global annual burned area mapping based on landsat images and google earth engine.[J]. Remote Sens, 2019, 11(5): 489. DOI: 10.3390/rs11050489.
[3]
李然, 王成, 苏国中, 等. 星载激光雷达的发展与应用[J]. 科技导报, 2007, 25(14): 58-63.
LI R, WANG C, SU G Z, et al. Development and applications of Spaceborne LiDAR[J]. Sci & Technol Rev, 2007, 25(14): 58-63. DOI:10.3321/j.issn:1000-7857.2007.14.010.
[4]
LEFSKY M A, HARDING D J, KELLER M, et al. Estimates of forest canopy height and aboveground biomass using ICESat[J]. Geophys Res Lett, 2005, 32(22): L22S02. DOI: 10.1029/2005gl023971, 2005.
[5]
DOLAN K, MASEK J G, HUANG C Q, et al. Regional forest growth rates measured by combining ICESat GLAS and Landsat data[J]. J Geophys Res, 2009, 114(G2): G00E05. DOI: 10.1029/2008JG000893, 2009.
[6]
BALLHORN U, JUBANSKI J, SIEGERT F. ICESat/GLAS data as a measurement tool for peatland topography and peat swamp forest biomass in Kalimantan, Indonesia[J]. Remote Sens, 2011, 3(9): 1957-1982. DOI: 10.3390/rs3091957.
[7]
HAYASHI M. Forest canopy height estimation using ICESat/GLAS data and error factor analysis in Hokkaido, Japan[J]. ISPRS J Photogramm and Remote Sens, 2013, 81: 12-18. DOI: 10.1016/j.isprsjprs.2013.04.004.
[8]
SHUMAN C A, ZWALLY H J, SCHUTZ B. E, et al. ICESat Antarctic elevation data: preliminary precision and accuracy assessment[J]. Geophys Res Lett, 2006, 33(7): L07501. DOI: 10.1029/2005gl025227, 2006.
[9]
DONGCHEN E, SHEN Q, XU Y, et al. High-accuracy topographical information extraction based on fusion of ASTER stereo-data and ICESat/GLAS data in Antarctica[J]. Sci China Ser D Earth Sci, 2009, 52(5): 714-722. DOI: 10.1007/s11430-009-0055-6.
[10]
JAWAK S D, LUIS A J. Synergistic use of multitemporal RAMP, ICESat and GPS to construct an accurate DEM of the Larsemann Hills region, Antarctica[J]. Adv Space Res, 2012, 50(4): 457-470. DOI: 10.1016/j.asr.2012.05.004.
[11]
ABDALATI W, ZWALLY H J, BINDSCHADLER R, et al. The ICESat-2 laser altimetry mission[J]. Proc IEEE, 2010, 98(5): 735-751. DOI: 10.1109/JPROC.2009.2034765.
[12]
DUBAYAH R, BLAIR J B, GOETZ S, et al. The global ecosystem dynamics investigation: high-resolution laser ranging of the Earth’s forests and topography[J]. Sci Remote Sens, 2020, 1(C): 100002. DOI: 10.1016/j.srs.2020.100002.
[13]
QI W, DUBAYAH R O. Combining Tandem-X InSAR and simulated GEDI lidar observations for forest structure mapping[J]. Remote Sens Environ, 2016, 187: 253-266. DOI: 10.1016/j.rse.2016.10.018.
[14]
ADAM M, URBAZAEV M, DUBOIS C, et al. Accuracy assessment of GEDI terrain elevation and canopy height estimates in European temperate forests: influence of environmental and acquisition parameters[J]. Remote Sens, 2020, 12(23): 3948. DOI: 10.3390/rs12233948.
[15]
GUERRA H J, PASCUAL A. Using GEDI lidar data and airborne laser scanning to assess height growth dynamics in fast-growing species: a showcase in Spain[J]. For Ecosyst, 2021, 8(1): 14. DOI: 10.1186/s40663-021-00291-2.
[16]
LIU A, CHENG X, CHEN Z Q. Performance evaluation of GEDI and ICESat-2 laser altimeter data for terrain and canopy height retrievals[J]. Remote Sens Environ, 2021, 264: 112571. DOI: 10.1016/j.rse.2021.112571.
[17]
DUBAYAH R, HOFTON M, BLAIR J, et al. GEDI L2A elevation and height metrics data global footprint level V002[R]. NASA EOSDIS Land Processes DAAC, 2021-05-07. DOI: 10.5067/GEDI/GEDI02_A.002.
[18]
COOK B, CORP L, NELSON R, et al. NASA goddard’s LiDAR, hyperspectral and thermal (G-liht) airborne imager[J]. Remote Sens, 2013, 5(8): 4045-4066. DOI: 10.3390/rs5084045.
[19]
ROY D P, Wulder M A, Loveland T R, et al. Landsat-8: science and product vision for terrestrial global change research[J]. Remote Sens Environ, 2014, 145: 154-172. DOI: 10.1016/j.rse.2014.02.001.
[20]
柳红凯, 徐昌荣, 徐晓. 基于渐进加密三角网机载LIDAR点云滤波改进算法研究[J]. 江西理工大学学报, 2016, 37(3): 50-55, 60.
LIU H K, XU C R, XU X. Study on improved algorithm of point clouds from airborne scanner based on progressive encryption TIN[J]. J Jiangxi Univ Sci Technol, 2016, 37(3): 50-55, 60. DOI:10.13265/j.cnki.jxlgdxxb.2016.03.009.
[21]
佟斯琴, 包玉海, 张巧凤, 等. 基于像元二分法和强度分析方法的内蒙古植被覆盖度时空变化规律分析[J]. 生态环境学报, 2016, 25(5): 737-743.
TONG S Q, BAO Y H, ZHANG Q F, et al. Spatial temporal changes of vegetation coverage in Inner Mongolia based on the dimidiate pixel model and intensity analysis[J]. Ecol Environ Sci, 2016, 25(5): 737-743. DOI:10.16258/j.cnki.1674-5906.2016.05.002.
PDF(2617 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/