Spatial and temporal evolution and distribution pattern of China’s relocation land converted to ecological land

ZHANG Guilian, YI Yang, ZHANG Lang

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (6) : 263-271.

PDF(15645 KB)
PDF(15645 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (6) : 263-271. DOI: 10.12302/j.issn.1000-2006.202202007

Spatial and temporal evolution and distribution pattern of China’s relocation land converted to ecological land

Author information +
History +

Abstract

【Objective】 The distribution and change in relocated areas are signs and footprints of human activities, reflecting human disturbance to the natural ecological environment. This study systematically examined the temporal and spatial evolutionary characteristics of the relocation area. The data provide a theoretical basis for the improvement of ecological space quality and function. 【Method】Based on GlobeLand30 surface coverage data, superposition, spatial autocorrelation, and directional distribution analyses, and a landscape pattern index were used to study the change in quantity and spatial distribution characteristics of relocation land that was changed to ecological land in prefecture-level administrative regions of China in the past 20 years. 【Result】Relocation areas in China were mainly concentrated in central China, south China, and northeast China. Their spatial distribution displayed a significant autocorrelation. The hot and cold spots in the relocation area exhibited obvious directionality. The hotspot area gradually moved northeast and the cold spot area gradually moved north. There were four types of local spatial autocorrelations in the relocation area, including High-High (HH), Low-Low (LL), Low-High (LH), and High-Low (HL) aggregations. HH and LL were the main types, HH and LL showed a continuous trend, LH was scattered around HH, and HL was less common. The proportion of lanscape area are occupied by patches (PLAND) in the relocated area increased and the average area(MPS) gradually decreased, indicating that the relocated area gradually increased in the form of small patches. 【Conclusion】This study quantified the area and proportion of relocation area in prefecture-level administrative regions of China. Most of the relocation areas were located in economically developed cities, such as the central and eastern regions and southern regions. This study provides data that will support urban planning and development.

Key words

relocation of construction land / spatial pattern / space-temporal change / ecological land / GlobeLand30

Cite this article

Download Citations
ZHANG Guilian , YI Yang , ZHANG Lang. Spatial and temporal evolution and distribution pattern of China’s relocation land converted to ecological land[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2023, 47(6): 263-271 https://doi.org/10.12302/j.issn.1000-2006.202202007

References

[1]
吴子璇, 张强, 宋长青, 等. 珠三角城市化对气温时空差异性影响[J]. 地理学报, 2019, 74(11): 2342-2357.
WU Z X, ZHANG Q, SONG C Q, et al. Impacts of urbanization on spatio-temporal variations of temperature over the Pearl River Delta[J]. Acta Geogr Sin, 2019, 74(11):2342-2357.DOI: 10.11821/dlxb201911011.
[2]
高艳丽, 刘世伟, 李书鹏. 城市化引发的污染场地问题详解与分析:看污染场地修复这十年[J]. 世界环境, 2013 (2):40-41.
GAO Y L, LIU S W, LI S P. Problems and analysis on contaminated sites caused by urbanization[J]. World Environ, 2013(2):40-41.DOI: 10.13544/j.cnki.jeg.2016.04.021.
[3]
任婉侠, 薛冰, 马志孝, 等. 老工业搬迁区土壤重金属污染特征及潜在生态风险-以沈阳铁西老工业区为例[J]. 可持续发展, 2012(2): 159-166.
REN W X, XUE B, MA Z X, et al. Characters and potential ecological risks of heavy metals in soil of Chinese brownfield redevelopment site:case of Tiexi old industrial area, Shenyang city[J]. Sustain Dev, 2012(2): 159-166. DOI:10.12677/SD.2012.24021.
[4]
徐盛洪, 程全国, 刘景琦, 等. 基于GIS的老工业搬迁区用地类型变化分析[J]. 新疆环境保护, 2021, 43(2): 43-50.
XU S H, CHENG Q G, LIU J Q, et al. Analysis of land types changes in old industrial relocation area based on GIS[J]. Environ Prot Xinjiang, 2021, 43(2):43-50.DOI: 10.3969/j.issn.1008-2301.2021.02.007.
[5]
谢学锦. “化学定时炸弹”与可持续发展:早日制定治理延缓性地球化学灾害的长期战略[J]. 中国青年科技, 2000(11):30-31,34.
XIE X J. “Chemical ticking time bomb” and sustainable development: early formulation of a long term strategy to cure delayed Geochemical disasters[J]. Sci China Youth Technol, 2000(11):30-31,34.
[6]
ROHR J R, FARAG A M, Cadotte M W, et al. Transforming ecosystems: when,where, and how to restore contaminated sites[J]. Integr Environ Assess Manag, 2016, 12(2):273-283. DOI: 10.1002/ieam.1668.
[7]
ARIAS E V A, RODRIGUEZ P A R, BARDOS P, et al. Contaminated land in Colombia: a critical review of current status and future approach for the management of contaminated sites[J]. Sci Total Environ, 2018, 618:199-209. DOI: 10.1016/j.scitotenv.2017.10.245.
[8]
林雅洁. 搬迁企业遗留场地土壤修复研究[J]. 环境与发展, 2020, 32(8): 254-254,256.
LIN Y J. Study on the soil restoration of the site left over by the relocated enterprises[J]. Environ Dev, 2020, 32(8):254-254,256.DOI:10.16647/j.cnki.cn15-1369/X.2020.08.147.
[9]
郑思俊, 张浪, 薛建辉, 等. 滨海城镇生活垃圾填埋场植被重建生态技术研究[J]. 中国园林, 2016, 32(8):25-30.
ZHENG S J, ZHANG L, XUE J H, et al. A study on ecological technology for vegetation restoration on landfill site of municipal solid waste in coastal town[J]. Chin Landsc Archit, 2016, 32(8):25-30.DOI: 10.3969/j.issn.0517-6611.2008.06.149.
[10]
ZHONG Q C, ZHANG L, ZHU Y, et al. A conceptual framework for ex ante valuation of ecosystem services of brownfield greening from a systematic perspective[J]. Ecosyst Health Sustain, 2020, 6(1):1743206.DOI: 10.1080/20964129.2020.1743206.
[11]
冯长红, 贺康宁, 任宝俊, 等. 河北省京津风沙源区困难立地植被恢复主要模式与技术[J]. 辽宁林业科技, 2009(1):52-56.
FENG C H, HE K N, REN B J, et al. Major models and techniques for vegetation rehabilitation on deteriorated lands in Beijing-Tianjin sandy and windy sources’ regions in Hebei Province[J]. Liaoning For Sci Technol, 2009(1):52-56.DOI: 10.3969/j.issn.1001-1714.2009.01.017.
[12]
王林. 不同树种对华北石质山区困难立地水分限制的响应[D]. 北京: 中国林业科学研究院, 2013.
WANG L. Response of different tree species to water restriction in difficult sites in rocky mountainous areas of north China[D]. Beijing: Chinese Academy of Forestry, 2013.
[13]
付梅臣, 吴淦国, 周伟. 矿山关闭及其生态环境恢复分析[J]. 中国矿业, 2005, 14(4):28-31.
FU M C, WU G G, ZHOU W. Analysis of mines closure and ecological environment reroration[J]. China Min Mag, 2005, 14(4):28-31.DOI:10.3969/j.issn.1004-4051.2005.04.009.
[14]
韩继刚, 李刚, 张维维, 等. 城市绿地土壤健康质量问题与对策[J]. 应用生态学报, 2022, 33(1):268-276.
HAN J G, LI G, ZHANG W W, et al. Problems and countermeasures of soil health quality in urban green space[J]. Chin J Appl Ecol, 2022, 33(1): 268-276. DOI:10.13287/j.1001-9332.202201.009.
[15]
于全波, 张浪, 黄绍敏, 等. 城镇搬迁地土壤厚度划分与案例研究[J]. 土壤, 2021, 53(5):1081-1086.
YU Q B, ZHANG L, HUANG S M, et al. Soil thickness partition in urban relocation and case studies[J]. Soils, 2021, 53(5):1081-1086. DOI:10.13758/j.cnki.tr.2021.05.025.
[16]
陈平, 张浪, 李跃忠, 等. 基于园林绿化用途城市搬迁地土壤质量评价的思考[J]. 园林, 2019(8):78-82.
CHEN P, ZHANG L, LI Y Z, et al. Thoughts on soil quality evaluation of urban relocation sites in landscaping[J]. Landsc Archit, 2019(8):78-82.DOI:10.3969/j.issn.1000-0283.2019.08.017.
[17]
刘家霖, 朱义, 张群, 等. 基于绿化用途的长三角区域主要城市困难立地空间识别[J]. 园林, 2021, 38(2):2-6.
LIU J L, ZHU Y, ZHANG Q, et al. Extractions on regenerated green spaces in Yangtze River Delta’s typical urban challenging[J]. Landsc Archit, 2021, 38(2):2-6.DOI: 10.12193/j.laing.2021.02.0002.001.
[18]
李晓策, 郑思俊, 张浪. 上海城市困难立地识别及分布特征[J]. 园林, 2021, 38(2):7-12.
LI X C, ZHENG S J, ZHANG L. Identification and distribution characteristics of challenging urban sites of Shanghai[J]. Landsc Archit, 2021, 38(2):7-12.DOI:10.12193/j.laing.2021.02.0007.002.
[19]
郑晓笛, 付泉川, 吴熙. 资源衰退型城市“城-棕-绿”空间格局研究:以湖北省黄石市为例[J]. 园林, 2021, 28(2):28-33.
ZHENG X D, FU Q C, WU X. Spatial pattern of “city-brown-green” in resource-exhausted cities:a case study of Huangshi city,Hubei Province[J]. Landsc Archit, 2021, 28(2):28-33.DOI: 10.14085/j.fjyl.2021.02.0028.06.
[20]
杨博, 殷明, 郑思俊. 人工型城市困难立地对高密度城市公园绿地系统的典型增益作用研究:以上海市中心城为例[J]. 园林, 2021, 38(2):19-24.
YANG B, YIN M, ZHENG S J. A study on the typical promotion effect of the artificial urban difficult sites to the green space system in high-density city: example of the central city of Shanghai[J]. Landsc Archit, 2021, 38(2):19-24.DOI: 10.12193/j.laing.2021.02.0019.004.
[21]
王梓璇, 邢汉发, 张焕雪, 等. 基于众源地理数据的GlobeLand30人造地表数据精度验证[J]. 地理信息世界, 2021, 28(4):100-105.
WANG Z X, XING H F, ZHANG H X, et al. Employing crowdsourced geographic information for GlobeLand30 artificial surface validation[J]. Geomat World, 2021, 28(4):100-105.DOI: 10.3969/j.issn.1672-1586.2021.04.017.
[22]
李子杰, 高沪宁, 丁琪洵, 等. 基于Moran’s I的安徽省太湖县耕地质量时空格局分析[J]. 水土保持通报, 2021, 41(3):350-356.
LI Z J, GAO H N, DING Q X, et al. Analysis on temporal and spatial patterns of cultivated land quality based on Moran’s I in Taihu County,Anhui Province[J]. Bull Soil Water Conserv, 2021, 41(3):350-356.DOI: 10.3969/j.issn.1674-3504.2019.04.015.
[23]
郭向阳, 穆学青, 明庆忠, 等. 长江经济带快速交通系统对城市旅游生产率的影响效应分析[J]. 经济地理, 2021, 41(12):213-222.
GUO X Y, MU X Q, MING Q Z, et al. Impact effect of rapid transport system on urban tourism productivity in the Yangtze River economic belt[J]. Econ Geogr, 2021, 41(12):213-222.DOI: 10.15957/j.cnki.jjdl.2021.12.023.
[24]
张世文, 宁汇荣, 高会议, 等. 基于各向异性的区域土壤有机碳三维模拟与空间特征分析[J]. 农业工程学报, 2016, 32(16):115-124.
ZHANG S W, NING H R, GAO H Y, et al. Three-dimensional simulation and spatial characteristics of soil organic carbon based on anisotropy in region[J]. Trans Chin Soc Agric Eng, 2016, 32(16):115-124.DOI: 10.11975/j.issn.1002-6819.2016.16.017.
[25]
YI Y, SHI M C, LIU C J, et al. On landscape patterns in typical mountainous counties middle reaches of the Yangtze River in China[J]. Int J Environ Res Public Health, 2021, 18(8):4000.DOI: 10.3390/ijerph18084000.
[26]
YI Y, WANG B, SHI M C, et al. Variation in vegetation and its driving force in the middle reaches of the Yangtze River in China[J]. Water, 2021, 13(15):2036.DOI: 10.3390/w13152036.
[27]
YI Y, SHI M C, LIU C J, et al. Changes of ecosystem services and landscape patterns in mountainous areas:a case study in the Mentougou district in Beijing[J]. Sustainability, 2018, 10(10):3689.DOI: 10.3390/su10103689.
[28]
PEDIADITI K, DOICK K J, MOFFAT A J. Monitoring and evaluation practice for brownfield,regeneration to greenspace initiatives[J]. Landsc Urban Plan, 2010, 97(1):22-36.DOI:10.1016/j.landurbplan.2010.04.007.
[29]
ALKER S, JOY V, ROBERTS P, et al. The definition of brownfield[J]. J Environ Plan Manag, 2000, 43(1):49-69.DOI: 10.1080/09640560010766.
[30]
冯宇. 试论污染场地土壤环境的管理与修复对策[J]. 科技创新与应用, 2016(29):157.
FENG Y. Discussion on management and remediation countermeasures of soil environment in contaminated sites[J]. Technol Innov A, 2016(29): 157.DOI: 10.3969/j.issn.1001-3865.2014.11.001.
[31]
JONES A J. Methods for assessing soil quality[J]. Sci Hortic-amsterdam, 1996(4): 355-356. DOI:10.1016/S0304-4238(97)00090-3.
[32]
任丽静. 搬迁企业遗留典型有机污染场地土壤修复研究[D]. 南京: 南京大学, 2012.
REN L J. Study on soil remediation of typical organic contaminated sites left by relocated enterprises[D]. Nanjing: Nanjing University, 2012.
[33]
张冬梅, 林奕成, 张浪, 等. 城市搬迁地适生绿化树种生长模型构建:以上海为例[J]. 上海农业科技, 2021(1):84-87.
ZHANG D M, LIN Y C, ZHANG L, et al. Construction of growth model of suitable greening tree species in urban relocation area:a case study of Shanghai[J]. Shanghai Agric Sci Technol, 2021(1):84-87.DOI: 10.3969/j.issn.1001-0106.2021.01.037.
[34]
张浪. 聚焦城市困难立地营造韧性生态之城[J]. 园林, 2021, 38(2):1.
ZHANG L. Focus on urban difficult sites and build a resilient ecological city[J]. Landsc Archit, 2021, 38(2):1.
[35]
张浪. 城市困难立地概念及其分类辨析[J]. 上海建设科技, 2020(3):107-109.
ZHANG L. Concept and classification of urban difficult sites[J]. Shanghai Constr Sci Technol, 2020(3):107-109.DOI: 10.3969/j.issn.1005-6637.2020.03.034.
[36]
张浪. 谈新时期城市困难立地绿化[J]. 园林, 2018(1):2-7.
ZHANG L. Talking about the greening of urban difficult sites in the new period[J]. Landsc Archit, 2018(1):2-7.DOI:10.3969/j.issn.1000-0283.2018.01.003.
[37]
张浪, 朱义, 薛建辉, 等. 转型期园林绿化的城市困难立地类型划分研究[J]. 现代城市研究, 2017, 32(9):114-118.
ZHANG L, ZHU Y, XUE J H, et al. Classification study of challenging urban sites in landscape gardening during urban transition period[J]. Mod Urban Res, 2017, 32(9):114-118.DOI: 10.3969/j.issn.1009-6000.2017.09.016.
[38]
易扬, 信忠保, 覃云斌, 等. 生态植被建设对黄土高原农林复合流域景观格局的影响[J]. 生态学报, 2013, 33(19):6277-6286.
YI Y, XIN Z B, QIN Y B, et al. Impact of ecological vegetation construction on the landscape pattern of a Loess Plateau Watershed[J]. Acta Ecol Sin, 2013, 33(19):6277-6286.DOI: 10.5846/stxb201306071389.
[39]
YI Y, ZHAO Y Y, DING G D, et al. Effects of urbanization on landscape patterns in a mountainous area:a case study in the Mentougou district,Beijing,China[J]. Sustainability, 2016, 8(11):1190.DOI:10.3390/su8111190.
[40]
YI Y, ZHANG C, ZHANG G L, et al. Effects of urbanization on landscape patterns in the middle reaches of the Yangtze River region[J]. Land, 2021, 10(10):1025.DOI:10.3390/land10101025.
[41]
易扬, 胡昕利, 史明昌, 等. 基于MODIS NDVI的长江中游区域植被动态及与气候因子的关系[J]. 生态学报, 2021, 41(19):7796-7807.
YI Y, HU X L, SHI M C, et al. Vegetation dynamics and its relationship with climate factors in the middle reaches of the Yangtze River based on MODIS NDVI[J]. Acta Ecol Sin, 2021, 41(19):7796-7807.DOI:10.5846/stxb202007251953.
[42]
YI Y, SHI M C, LIU J L, et al. Spatial distribution of precise suitability of plantation:a case study of main coniferous forests in Hubei Province,China[J]. Land, 2022, 11(5):690.DOI:10.3390/land11050690.
[43]
马坤, 唐晓岚, 王燕燕, 等. 长江中游流域水资源禀赋特征及其与自然保护地的空间关系研究[J]. 南京林业大学学报(自然科学版), 2022, 46(3):21-30.
MA K, TANG X L, WANG Y Y, et al. Research on the characteristics of water resources endowments and its spatial relationship with natural protected areas in the middle Yangtze River basin[J]. J Nanjing For Univ (Nat Sci Ed), 2022, 46(3):21-30. DOI: 10.12302/j.issn.1000-2006.2020110007.
[44]
许浩, 金婷, 刘伟. 苏锡常都市圈蓝绿空间规模与格局演变特征[J]. 南京林业大学学报(自然科学版), 2022, 46(1):219-226.
XU H, JIN T, LIU W. Study on the scale and landscape pattern evolution characteristics of blue-green space in Suzhou-Wuxi-Changzhou metropolitan area, China[J]. J Nanjing For Univ (Nat Sci Ed), 2022, 46(1):219-226. DOI: 10.12302/j.issn.1000-2006.202101037.
[45]
YI Y, ZHANG C, ZHANG G L, et al. Effects of urbanization on landscape patterns in the middle reaches of the Yangtze River region[J]. Land, 2021, 10(10):1025.DOI: 10.3390/land10101025.
[46]
丁宇, 张雷, 马昕琳. 山地城镇化与资源环境承载力耦合协调发展的时空演变[J]. 环境科学研究, 2022, 35(2):592-600.
DING Y, ZHANG L, MA X L. Temporal and spatial evolution of coupling coordination of mountainous urbanization and its resource and environment carrying capacity[J]. Res Environ Sci, 2022, 35(2):592-600.DOI:10.13198/j.issn.1001-6929.2021.11.27.
[47]
吴英迪, 蒙吉军. 中国自然资源生态服务重要性评价与空间格局分析[J]. 自然资源学报, 2022, 37(1):17-33.
WU Y D, MENG J J. Quantifying the spatial pattern for the importance of natural resource ecosystem services in China[J]. J Nat Resour, 2022, 37(1):17-33.DOI:10.31497/zrzyxb.20220102.

Footnotes

PDF(15645 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/