Comparison of growth and photosynthetic characteristics of introduced Acer rubrum on two purple soils

WEI Jing, TAN Xing, WANG Changsheng, YAN Rui, LI Linke, NING Yue, LIU Yun

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (1) : 97-105.

PDF(2052 KB)
PDF(2052 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (1) : 97-105. DOI: 10.12302/j.issn.1000-2006.202202012

Comparison of growth and photosynthetic characteristics of introduced Acer rubrum on two purple soils

Author information +
History +

Abstract

【Objective】 The growth and photosynthetic characteristics responses of Acer rubrum following introduction to two kinds of purple soil were studied, to provide reference data for the development and use of a suitable variety of A. rubrum in the Chongqing area of China. 【Method】 A. rubrum ‘Marmo’ and ‘Aurea’ introduced into neutral purple soil (NS1) and callitic purple soil (AS2) were analyzed. Growth, leaf color, and photosynthetic characteristics of A. rubrum were compared in the two kinds of purple soil in summer, when their growth was vigorous. 【Result】 The net plant height, crown width, leaf area of ‘Marmo’ were positively correlated with alkali-hydrolyzed nitrogen, available potassium, carbon/nitrogen ratio, and organic matter, and negatively correlated with soil pH. Compared with the initial introduction, the plant height of ‘Marmo’ in the neutral and calcareous zones increased by 3.44 m and 1.18 m, respectively, ground diameter increased by 5.14 cm and 2.22 cm, respectively, and the leaf area and specific leaf area were significantly different. However, there were no significant differences of ‘Aurea’ in net plant height, net ground diameter, or specific leaf area. The chlorophyll a (ChlT), chlorophyll b (Chlb), total chlorophyll (ChlT), carotenoid (Car), L*, a* and b* values, maximum photochemical efficiency (Fv/Fm), electron transfer efficiency (ETR), light energy capture efficiency Y(Ⅱ), photochemical quenching coefficients (qP), leaf maximum net photosynthetic rate, light saturation point (LSP), apparent quantum yield (AQY), leaf carboxylation rate, leaf carboxylation rate (α), and photorespiration rate (Rp) of ‘Marmo’ in neutral zone were significantly higher than that of in calcareous zone (P<0.05). Compared with purple soil alkaline zone, Pn,max and intercellular CO2 concentration of (Cs) ‘Aurea, in the neutral zone were significantly increased, LCP, CO2 compensation point (CCP) were significantly decreased (P<0.05). Chla, ChlT, Chl a/b, L*, a*, b* Fv/Fm, ETR, Y(Ⅱ), qP, LSP, AQY, CCP, Rd and Rp of ‘Aurea’ in the neutral zone were not significantly different from those in the calcareous zone (P>0.05). 【Conclusion】 Among the two types of purple soil, ‘Marmo’ increased the photosynthetic electron transfer rate and photosynthetic rate of photosystem Ⅱ and reduced the consumption of organic matter by increasing the light energy capture area. The photosynthetic capacity was enhanced and growth was strong in the neutral region, while the performance of ‘Marmo’ was poor in the calcareous zone, indicating that this variety is not suitable for alkaline purple soil. The photosynthetic characteristics and growth of ‘Aurea’ showed strong adaptability to the two types of purple soil.

Key words

introduction / Acer rubrum / growth adaptability / photosynthetic characteristics / chlorophyll fluorescence parameter / leaf color parameter

Cite this article

Download Citations
WEI Jing , TAN Xing , WANG Changsheng , et al . Comparison of growth and photosynthetic characteristics of introduced Acer rubrum on two purple soils[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(1): 97-105 https://doi.org/10.12302/j.issn.1000-2006.202202012

References

[1]
颜廷武. 不同种源美国红枫苗期光合特性研究[J]. 辽宁林业科技, 2014(6): 24-26.
YAN T W. Studies on seedling photosynthetic characteristics of Acer rubrum from different provenances[J]. Liaoning For Sci Technol, 2014(6): 24-26. DOI: 10.3969/j.issn.1001-1714.2014.06.006.
[2]
何素芬, 钟栎, 何剑平. 美国红枫引种繁育与规模化栽培技术初报[J]. 农业科技与信息, 2016, 13(22):111,113.
HE S F, ZHONG L, HE J P. Preliminary report on introduction,breeding and large-scale cultivation techniques of American Red maple[J]. Inf Agric Sci Technol, 2016, 13(22):111,113. DOI: 10.3969/j.issn.1003-6997.2016.22.080.
[3]
吴雅琼, 刘婧, 汪贵斌, 等. 美国红枫的组织培养与快繁技术[J]. 北方园艺, 2016(20): 97-102.
WU Y Q, LIU J, WANG G B, et al. Tissue culture and rapid propagation of Acer rubrum[J]. North Hortic, 2016(20):97-102. DOI:10.11937/bfyy.201620025.
[4]
何素芬, 吴戎, 顾大勤. 美国红枫硬枝扦插育苗试验研究[J]. 四川林业科技, 2014, 35(1): 61-62,88.
HE S F, WU R, GU D Q. Experimental study on hardwood cuttings of Acer rubrum[J]. J Sichuan For Sci Technol, 2014, 35(1):61-62, 88. DOI:10.16779/j.cnki.1003-5508.2014.01.015.
[5]
WESTON D J, BAUERLE W L. Inhibition and acclimation of C3 photosynthesis to moderate heat:a perspective from thermally contrasting genotypes of Acer rubrum(Red maple)[J]. Tree Physiol, 2007, 27: 1083-1092. DOI:10.1093/treephys/27.8.1083.
[6]
李力. 北美红枫呈色生理机制及叶色调控[D]. 重庆: 西南大学, 2016.
LI L. Physiological mechanism and leaf color regulation of red maple in north America[D]. Chongqing: Southwest University, 2016.
[7]
BERG G, SMALLA K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere[J]. FEMS Microbiol Ecol, 2009, 68(1): 1-13. DOI:10.1111/j.1574-6941.2009.00654.x.
[8]
熊淑萍, 张娟娟, 杨阳, 等. 不同冬小麦品种在3种质地土壤中氮代谢特征及利用效率分析[J]. 植物生态学报, 2013, 37(7): 601-610.
XIONG S P, ZHANG J J, YANG Y, et al. Research on nitrogen metabolism characteristics and use efficiency in different winter wheat cultivars grown on three soil textures[J]. Chin J Plant Ecol, 2013, 37(7): 601-610. DOI: 10.3724/SP.J.1258.2013.00062.
[9]
WANG G M, STRIBLEY D P, TINKER P B, et al. Effects of pH on arbuscular mycorrhiza, I: field observations on the long-term liming experiments at Rothamsted and Woburn[J]. New Phytol, 1993, 124(3): 465-472. DOI:10.1111/j.1469-8137.1993.tb03837.x.
[10]
丁武泉, 包兵, 李航, 等. 三峡库区消落区紫色土对重金属的吸附特征[J]. 生态与农村环境学报, 2007, 23(1):40-42,62.
DING W Q, BAO B, LI H, et al. Heavy metal adsorption characteristics of purple soil in water-level-fluctuating zone of Three-Gorge Seservoir region[J]. J Ecol Rural Environ, 2007, 23(1):40-42, 62. DOI: 10.3969/j.issn.1673-4831.2007.01.009.
[11]
袁贵琼, 刘芸, 邬静淳, 等. 模拟三峡库区消落带水淹对3类土壤中桑树和水桦生长的影响[J]. 西北农林科技大学学报(自然科学版), 2018, 46(6): 65-74.
YUAN G Q, LIU Y, WU J C, et al. Response of growth of mulberry and birch under three soil types to simulated flooding in the Three Gorges Reservoir region[J]. J Northwest A&F Univ (Nat Sci Ed), 2018, 46(6): 65-74. DOI:10.13207/j.cnki.jnwafu.2018.06.009.
[12]
黄小辉, 刘芸, 李佳杏, 等. 模拟三峡库区消落带土壤干旱对桑树生理特性的影响[J]. 西南大学学报(自然科学版), 2013, 35(9): 127-132.
HUANG X H, LIU Y, LI J X, et al. Simulation the effect of soil drought on mulberry physiological characteristics in the Three Gorges Reservoir area[J]. J Southwest Univ (Nat Sci), 2013, 35(9): 127-132. DOI:10.13718/j.cnki.xdzk.2013.09.024.
[13]
王峰, 陈玉真, 尤志明, 等. 不同类型茶园土壤团聚体组成特征及稳定性研究[J]. 茶叶科学, 2014, 34(2): 129-136.
WANG F, CHEN Y Z, YOU Z M, et al. Study on the composition characteristics and stability of soil aggregates in different types of tea garden[J]. J Tea Sci, 2014, 34(2): 129-136. DOI:10.13305/j.cnki.jts.2014.02.004.
[14]
张淑勇, 周泽福, 夏江宝, 等. 不同土壤水分条件下小叶扶芳藤叶片光合作用对光的响应[J]. 西北植物学报, 2007, 27(12): 2514-2521.
ZHANG S Y, ZHOU Z F, XIA J B, et al. The responses of Euonymus fortunei var. radicans sieb leaf photosynthesis to light in different soil moisture[J]. Journal of Northwest Plants, 2007, 27(12): 2514-2521. DOI:1000-4025( 2007)12-2514-2521.
[15]
夏贵菊, 何彤慧, 赵永全, 等. 不同土壤类型对芦苇生长及光合特征的影响[J]. 西北植物学报, 2014, 34(6): 1252-1258.
XIA G J, HE T H, ZHAO Y Q, et al. Influence of different soil types on reed growth and photosynthesis characteristics[J]. Journal of Northwest Plants, 2014, 34(6): 1252-1258. DOI:10.7606/j.issn.1000-4025.2014.06.1252.
[16]
闫小莉, 王德炉. 不同类型土壤栽培对苦丁茶树叶片生长和光合特性的影响[J]. 生态学报, 2019, 39(19): 7208-7217.
YAN X L, WANG D L. Effects of different soil types on growth and photosynthetic characteristics of Ligustrum robustum[J]. Acta Ecol Sin, 2019, 39(19): 7208-7217. DOI: 10.5846/stxb201806111303.
[17]
杨剑虹, 王成林, 代亨林. 土壤农化分析与环境监测[M]. 北京: 中国大地出版社, 2008.
YANG J H, WANG C L, DAI H L. Soil agrochemical analysis and environmental monitoring[M]. Beijing: China Land Press, 2008.
[18]
苍晶, 赵会杰. 植物生理学实验教程[M]. 北京: 高等教育出版社, 2013: 57-59.
CANG J, ZHAO H J. Experimental course of plant physiology[M]. Beijing: Higher Education Press, 2013:57-59.
[19]
TAN X, WU J J, LIU Y, et al. Estimation of leaf color variances of Cotinus coggygria based on geographic and environmental variables[J]. J For Res, 2021, 32(2): 609-622. DOI:10.1007/s11676-020-01118-6.
[20]
YE Z P, YU Q. Comparison of new and several classical models of photosynthesis in response to irradiance[J]. Journal of Plant Ecology, 2008, 32(6): 1356-1361. DOI:10.3773/j.issn.1005-264x.2008.06.016.
[21]
陈芳清, 郭成圆, 王传华, 等. 水淹对秋华柳幼苗生理生态特征的影响[J]. 应用生态学报, 2008, 19(6): 1229-1233.
CHEN F Q, GUO C Y, WANG C H, et al. Effects of water logging on eco-physiological characteristics of Salix variegate seedlings[J]. Chin J Appl Ecol, 2008, 19(6): 1229-1233. DOI:10.13287/j.1001-9332.2008.0228.
[22]
谢春, 周长芳, 龙水云, 等. 挺水植物与浮叶植物光合荧光特性的差异[J]. 生态学报, 2018, 38(7): 2493-2502.
XIE C, ZHOU C F, LONG S Y, et al. Photosynthetic characteristics differ between emergent and floating-leaved macrophytes[J]. Acta Ecol Sin, 2018, 38(7): 2493-2502. DOI:10.5846/stxb201704120652.
[23]
白宇清, 谢利娟, 王定跃. 不同遮荫、土壤排水处理对毛棉杜鹃幼苗生长及光合特性的影响[J]. 林业科学, 2017, 53(2): 44-53.
BAI Y Q, XIE L J, WANG D Y. Influences of different shading and soil water drainage on growth and photosynthetic characteristics of Rhododendron moulmainense[J]. Sci Silvae Sin, 2017, 53(2): 44-53. DOI:10.11707/j.1001-7488.20170206.
[24]
BOARDMAN N K. Comparative photosynthesis of sun and shade plants[J]. Annu Rev Plant Physiol, 1977, 28: 355-377. DOI:10.1146/annurev.pp.28.060177.002035.
[25]
JOUBERT C, YOUNG P R, EYÉGHÉ-BICKONG H A, et al. Field-grown grapevine berries use carotenoids and the associated xanthophyll cycles to acclimate to UV exposure differentially in high and low light (shade) conditions[J]. Front Plant Sci, 2016, 7:786. DOI:10.3389/fpls.2016.00786.
[26]
陆燕元, 马焕成, 李昊民, 等. 土壤干旱对转基因甘薯光合曲线的响应[J]. 生态学报, 2015, 35(7): 2155-2160.
LU Y Y, MA H C, LI H M, et al. Light response characteristics of photosynthetic of transgenic sweet potato under drought stress[J]. Acta Ecol Sin, 2015, 35(7): 2155-2160. DOI: 10.5846/stxb201306041308.
[27]
叶子飘, 赵则海. 遮光对三叶鬼针草光合作用和叶绿素含量的影响[J]. 生态学杂志, 2009, 28(1): 19-22.
YE Z P, ZHAO Z H. Effects of shading on the photosynthesis and chlorophyll content of Bidens pilosa[J]. Chin J Ecol, 2009, 28(1): 19-22. DOI:10.13292/j.1000-4890.2009.0052.
[28]
王荣荣, 夏江宝, 杨吉华, 等. 贝壳砂生境干旱胁迫下杠柳叶片光合光响应模型比较[J]. 植物生态学报, 2013, 37(2): 111-121.
WANG R R, XIA J B, YANG J H, et al. Comparison of light response models of photosynthesis in leaves of Periploca sepium under drought stress in sand habitat formed from seashells[J]. Chin J Plant Ecol, 2013, 37(2): 111-121. DOI:10.3724/SP.J.1258.2013.00012.
[29]
RICHARDSON A D, BERLYN G P. Spectral reflectance and photosynthetic properties of Betula papyrifera (Betulaceae) leaves along an elevational gradient on Mt. Mansfield, Vermont,USA[J]. Am J Bot, 2002, 89(1): 88-94. DOI:10.3732/ajb.89.1.88.
[30]
李威, 杨德光, 牟尧, 等. 去遮荫后东北红豆杉幼苗和幼树光合特性对比[J]. 林业科学, 2018, 54(2): 179-185.
LI W, YANG D G, MU Y, et al. Photosynthesis and chlorophyll fluorescence characteristics of seedlings and saplings of Taxus cuspidata after removing shade[J]. Sci Silvae Sin, 2018, 54(2): 179-185. DOI:10.11707/j.1001-7488.20180221.
[31]
BUSCH F A. Photorespiration in the context of Rubisco biochemistry, CO2 diffusion and metabolism[J]. Plant J, 2020, 101(4): 919-939. DOI:10.1111/tpj.14674.
[32]
王振夏, 魏虹, 吕茜, 等. 枫杨幼苗对土壤水分“湿-干”交替变化光合及叶绿素荧光的响应[J]. 生态学报, 2013, 33(3): 888-897.
WANG Z X, WEI H, LYU Q, et al. Response of photosynthesis and chlorophyll fluorescence characteristics of Pterocarya stenoptera seedlings to submergence and drought alternation[J]. Acta Ecol Sin, 2013, 33(3): 888-897. DOI:10.5846/stxb201204240589.
[33]
DEMMIG B, BJÖRKMAN O. Comparison of the effect of excessive light on chlorophyll fluorescence(77K) and photon yield of O2 evolution in leaves of higher plants[J]. Planta, 1987, 171(2): 171-184. DOI: 10.1007/BF00391092.
[34]
SHARP R E, MATTHEWS M A, BOYER J S. Kok effect and the Quantum yield of photosynthesis: light partially inhibits dark respiration[J]. Plant Physiol, 1984, 75(1): 95-101. DOI:10.1104/pp.75.1.95.
[35]
BRESTIC M, ZIVCAK M, KUNDERLIKOVA K, et al. High temperature specifically affects the photoprotective responses of chlorophyll b-deficient wheat mutant lines[J]. Photosynth Res, 2016, 130(1/3): 251-266. DOI:10.1007/s11120-016-0249-7.
[36]
LI X X, ZENG R S, LIAO H. Improving crop nutrient efficiency through root architecture modifications[J]. J Integr Plant Biol, 2016, 58(3): 193-202. DOI:10.1111/jipb.12434.
[37]
饶立华, 蒋德安, 薛建明, 等. 钾营养对水稻光合器功能的效应与谷粒产量的影响[J]. 植物生理学报, 1989, 15(2): 191-197.
RAO L H, JIANG D A, XUE J M, et al. Effect of potassium on the function of photosynthetic apparatus and grain yield of rice[J]. Acta Phytophysiologica Sinica, 1989, 15(2): 191-197.
[38]
韩辉, 宫伟. 不同土壤酸碱度对紫花槭秋季叶色变化的影响[J]. 吉林农业, 2010(6): 76-80.
HAN H, GONG W. Effects of soil pH on leaf color of Acer truncatum in autumn[J]. Jilin Nongye, 2010(6): 76-80.
[39]
苏娓娓. 不同K+和pH水平对红叶石楠叶色和生理的影响[D]. 南京: 南京林业大学, 2011.
SU W W. The influence of different K+ and pH treatments to the leaf colour and physiology property of Photinia×fraseri ‘Red Robin’[D]. Nanjing: Nanjing Forestry University, 2011.
[40]
邓雪花, 喻阳华, 熊康宁, 等. 不同林龄花椒光合特性及对土壤养分的响应[J]. 森林与环境学报, 2022, 42(2): 149-157.
DENG X H, YU Y H, XIONG K N, et al. Photosynthetic characteristics and responses to soil nutrients of differently aged Zanthoxylum planispinum stands[J]. J For Environ, 2022, 42(2): 149-157. DOI:10.13324/j.cnki.jfcf.2022.02.005.
[41]
张黛静, 陈倩青, 宗洁静, 等. 增施有机肥对冬小麦同化物积累与分配的影响[J]. 应用生态学报, 2019, 30(6): 1869-1876.
ZHANG D J, CHEN Q Q, ZONG, J J, et al. Effects of increasing organic fertilizer application on assimilates accumulation and distribution in winter wheat[J]. Chin J Appl Ecol, 2019, 30(6): 1869-1876. DOI:10.13287/j.1001-9332.201906.014.
PDF(2052 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/