
Mapping regional forest aboveground biomass from random forest Co-Kriging approach: a case study from north Guangdong
ZHOU Youfeng, XIE Binglou, LI Mingshi
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (1) : 169-178.
Mapping regional forest aboveground biomass from random forest Co-Kriging approach: a case study from north Guangdong
【Objective】 Forest aboveground biomass (AGB) is an important indicator for evaluating forest ecosystem health status and carbon sink potential. Accurate and quick mapping regional forest AGB has become intensively researched in forest ecosystem status assessment and global climate change studies in recent years. The major objective of this study was to develop a framework for improving the mapping accuracy of AGB in a subtropical forested area with complex terrain. 【Method】 Spectral features, textural indices, backscattering coefficients, and topographical variables were derived from Landsat 5 TM, ALOS-1 PALSAR-1 data and STRM DEM. Next, in tandem with national forest inventory plot measurements, a random forest/Co-Kriging framework that combines the advantages of random forest (RF) and a geostatistical approach was proposed to map AGB in northern Guangdong Province. 【Result】 The experimental results showed that the ordinary Kriging (OK) and Co-Kriging (CK) were able to predict the distribution of the RF-predicted AGB residuals. The predicted structured components of the residuals adding onto the RF predictions could improve the mapping accuracy of AGB to some extent. After the validation of the independent 20% dataset, the determination coefficient between the predictions and the observations increased from 0.46 (RF) to 0.51 (RFOK) and to 0.57 (RFCK). The root mean square error decreased from 32.48 to 31.58 and to 29.80 t/hm2 accordingly. The mean absolute error decreased from 27.28 to 26.63 and to 25.12 t/hm2. Overall, co-Kriging, which considers elevation as a co-variable, was better than ordinary Kriging in predicting AGB residuals. 【Conclusion】 The RFCK framework provides an accurate and reliable method to map subtropical AGB with complex topography. The resulting AGB maps contribute to targeted forest resource management and promote forest carbon sequestration and sustainable forest management under global warming scenarios.
forest aboveground biomass / random forest / Co-Kriging / ALOS-1 PALSAR-1 / Landsat 5 TM / national forest inventory / north Guangdong Province
[1] |
|
[2] |
张志, 田昕, 陈尔学, 等. 森林地上生物量估测方法研究综述[J]. 北京林业大学学报, 2011, 33(5):144-150.
|
[3] |
张少伟, 惠刚盈, 韩宗涛, 等. 基于光学多光谱与SAR遥感特征快速优化的大区域森林地上生物量估测[J]. 遥感技术与应用, 2019, 34(5):925-938.
|
[4] |
汤旭光, 刘殿伟, 王宗明, 等. 森林地上生物量遥感估算研究进展[J]. 生态学杂志, 2012, 31(5):1311-1318.
|
[5] |
韩爱惠. 森林生物量及碳储量遥感监测方法研究[D]. 北京: 北京林业大学, 2009.
|
[6] |
孙雪莲, 舒清态, 欧光龙, 等. 基于随机森林回归模型的思茅松人工林生物量遥感估测[J]. 林业资源管理, 2015(1):71-76.
|
[7] |
欧光龙, 胥辉. 森林生物量模型研究综述[J]. 西南林业大学学报(自然科学), 2020, 40(1):1-11.
|
[8] |
张雷, 王琳琳, 张旭东. 随机森林算法基本思想及其在生态学中的应用——以云南松分布模拟为例[J]. 生态学报, 2014, 34(3):650-659.
|
[9] |
[10] |
|
[11] |
|
[12] |
许振宇, 李盈昌, 李明阳, 等. 基于Sentinel-1A和Landsat 8数据的区域森林生物量反演[J]. 中南林业科技大学学报, 2020, 40(11):147-155.
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
卢月明, 王亮, 仇阿根, 等. 一种基于主成分分析的协同克里金插值方法[J]. 测绘通报, 2017(11):51-57,63.
|
[23] |
|
[24] |
|
[25] |
|
[26] |
宋茜, 范文义. 大兴安岭植被生物量的ALOS PALSAR估算[J]. 应用生态学报, 2011, 22(2):303-308.
|
[27] |
王璟睿, 沈文娟, 李卫正, 等. 基于RapidEye的人工林生物量遥感反演模型性能对比[J]. 西北林学院学报, 2015, 30(6): 196-202.
|
[28] |
杜虎, 曾馥平, 王克林, 等. 中国南方3种主要人工林生物量和生产力的动态变化[J]. 生态学报, 2014, 34(10):2712-2724.
|
[29] |
李明诗, 谭莹, 潘洁, 等. 结合光谱、纹理及地形特征的森林生物量建模研究[J]. 遥感信息, 2006(6):6-9,66.
|
[30] |
徐婷, 曹林, 佘光辉. 基于Landsat 8 OLI的特征变量优化提取及森林生物量反演[J]. 遥感技术与应用, 2015, 30(2):226-234.
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
李云, 张王菲, 崔鋆波, 等. 参数优选支持的光学与SAR数据森林地上生物量反演研究[J]. 北京林业大学学报, 2020, 42(10):11-19.
|
[36] |
|
/
〈 |
|
〉 |