Mapping regional forest aboveground biomass from random forest Co-Kriging approach: a case study from north Guangdong

ZHOU Youfeng, XIE Binglou, LI Mingshi

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (1) : 169-178.

PDF(2806 KB)
PDF(2806 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (1) : 169-178. DOI: 10.12302/j.issn.1000-2006.202202015

Mapping regional forest aboveground biomass from random forest Co-Kriging approach: a case study from north Guangdong

Author information +
History +

Abstract

【Objective】 Forest aboveground biomass (AGB) is an important indicator for evaluating forest ecosystem health status and carbon sink potential. Accurate and quick mapping regional forest AGB has become intensively researched in forest ecosystem status assessment and global climate change studies in recent years. The major objective of this study was to develop a framework for improving the mapping accuracy of AGB in a subtropical forested area with complex terrain. 【Method】 Spectral features, textural indices, backscattering coefficients, and topographical variables were derived from Landsat 5 TM, ALOS-1 PALSAR-1 data and STRM DEM. Next, in tandem with national forest inventory plot measurements, a random forest/Co-Kriging framework that combines the advantages of random forest (RF) and a geostatistical approach was proposed to map AGB in northern Guangdong Province. 【Result】 The experimental results showed that the ordinary Kriging (OK) and Co-Kriging (CK) were able to predict the distribution of the RF-predicted AGB residuals. The predicted structured components of the residuals adding onto the RF predictions could improve the mapping accuracy of AGB to some extent. After the validation of the independent 20% dataset, the determination coefficient between the predictions and the observations increased from 0.46 (RF) to 0.51 (RFOK) and to 0.57 (RFCK). The root mean square error decreased from 32.48 to 31.58 and to 29.80 t/hm2 accordingly. The mean absolute error decreased from 27.28 to 26.63 and to 25.12 t/hm2. Overall, co-Kriging, which considers elevation as a co-variable, was better than ordinary Kriging in predicting AGB residuals. 【Conclusion】 The RFCK framework provides an accurate and reliable method to map subtropical AGB with complex topography. The resulting AGB maps contribute to targeted forest resource management and promote forest carbon sequestration and sustainable forest management under global warming scenarios.

Key words

forest aboveground biomass / random forest / Co-Kriging / ALOS-1 PALSAR-1 / Landsat 5 TM / national forest inventory / north Guangdong Province

Cite this article

Download Citations
ZHOU Youfeng , XIE Binglou , LI Mingshi. Mapping regional forest aboveground biomass from random forest Co-Kriging approach: a case study from north Guangdong[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(1): 169-178 https://doi.org/10.12302/j.issn.1000-2006.202202015

References

[1]
PAN Y D, BIRDSEY R A, FANG J Y, et al. A large and persistent carbon sink in the world’s forests[J]. Science, 2011, 333(6045):988-993.DOI:10.1126/science.1201609.
[2]
张志, 田昕, 陈尔学, 等. 森林地上生物量估测方法研究综述[J]. 北京林业大学学报, 2011, 33(5):144-150.
ZHANG Z, TIAN X, CHEN E X, et al. Review of methods on estimating forest above ground biomass[J]. J Beijing For Univ, 2011, 33(5):144-150.DOI:10.13332/j.1000-1522.2011.05.026.
[3]
张少伟, 惠刚盈, 韩宗涛, 等. 基于光学多光谱与SAR遥感特征快速优化的大区域森林地上生物量估测[J]. 遥感技术与应用, 2019, 34(5):925-938.
ZHANG S W, HUI G Y, HAN Z T, et al. Estimation of large-scale forest above-ground biomass based on fast optimizing remotely sensed features from optical multi-spectral and SAR data[J]. Remote Sens Technol Appl, 2019, 34(5):925-938.DOI:10.11873/j.issn.1004-0323.2019.5.0925.
[4]
汤旭光, 刘殿伟, 王宗明, 等. 森林地上生物量遥感估算研究进展[J]. 生态学杂志, 2012, 31(5):1311-1318.
TANG X G, LIU D W, WANG Z M, et al. Estimation of forest aboveground biomass based on remote sensing data:a review[J]. Chin J Ecol, 2012, 31(5):1311-1318.DOI:10.13292/j.1000-4890.2012.0182.
[5]
韩爱惠. 森林生物量及碳储量遥感监测方法研究[D]. 北京: 北京林业大学, 2009.
HAN A H. Study on monitoring method of forest biomass and carton storage based on remote sensing[D]. Beijing: Beijing Forestry University, 2009.
[6]
孙雪莲, 舒清态, 欧光龙, 等. 基于随机森林回归模型的思茅松人工林生物量遥感估测[J]. 林业资源管理, 2015(1):71-76.
SUN X L, SHU Q T, OU G L, et al. Remote sensing estimation of the biomass of artificial Simao pine forest based on random forest regression[J]. For Resour Manag, 2015(1):71-76.DOI:10.13466/j.cnki.lyzygl.2015.01.013.
[7]
欧光龙, 胥辉. 森林生物量模型研究综述[J]. 西南林业大学学报(自然科学), 2020, 40(1):1-11.
OU G L, XU H. A review on forest biomass models[J]. J Southwest For Univ(Nat Sci), 2020, 40(1):1-11.DOI:10.11929/j.swfu.201907029.
[8]
张雷, 王琳琳, 张旭东. 随机森林算法基本思想及其在生态学中的应用——以云南松分布模拟为例[J]. 生态学报, 2014, 34(3):650-659.
ZHANG L, WANG L L, ZHANG X D, et al. The basic principle of random forest and its applications in ecology: a case study of Pinus yunnanensis[J]. Acta Ecol Sin, 2014, 34(3):650-659. DOI:10.5846/stxb201306031292.
[9]
BREIMAN L. Random forests[J]. Mach Learn, 2001, 45(1):5-32.DOI:10.1023/A:1010933404324.
[10]
ZHAO Q X, YU S C, ZHAO F, et al. Comparison of machine learning algorithms for forest parameter estimations and application for forest quality assessments[J]. For Ecol Manag, 2019, 434:224-234.DOI:10.1016/j.foreco.2018.12.019.
[11]
HLATSHWAYO S T, MUTANGA O, LOTTERING R T, et al. Mapping forest aboveground biomass in the reforested Buffelsdraai landfill site using texture combinations computed from SPOT-6 pan-sharpened imagery[J]. Int J Appl Earth Obs Geoinformation, 2019, 74:65-77. DOI:10.1016/j.jag.2018.09.005.
[12]
许振宇, 李盈昌, 李明阳, 等. 基于Sentinel-1A和Landsat 8数据的区域森林生物量反演[J]. 中南林业科技大学学报, 2020, 40(11):147-155.
XU Z Y, LI Y C, LI M Y, et al. Forest biomass retrieval based on Sentinel-1A and Landsat 8 image[J]. J Central South Univ For Technol, 2020, 40(11):147-155.DOI:10.14067/j.cnki.1673-923x.2020.11.018.
[13]
GUO P T, LI M F, LUO W, et al. Digital mapping of soil organic matter for rubber plantation at regional scale: an application of random forest plus residuals Kriging approach[J]. Geoderma, 2015, 237:49-59. DOI:10.1016/j.geoderma.2014.08.009.
[14]
SEKULIC A, KILIBARDA M, HEUVELINK G B M, et al. Random forest spatial interpolation[J]. Remote Sens, 2020, 12(10):1687.DOI:10.3390/rs12101687.
[15]
FAYAD I, BAGHDADI N, BAILLY J S, et al. Regional scale rain-forest height mapping using regression-kriging of spaceborne and airborne LiDAR data:application on French Guiana[J]. Remote Sens, 2016, 8(3):240.DOI:10.3390/rs8030240.
[16]
LI J, HEAP A D, POTTER A, et al. Application of machine learning methods to spatial interpolation of environmental variables[J]. Environ Model Softw, 2011, 26(12):1647-1659.DOI:10.1016/j.envsoft.2011.07.004.
[17]
DOS REIS A A, CARVALHO M C, DE MELLO J M, et al. Spatial prediction of basal area and volume in Eucalyptus stands using Landsat TM data:an assessment of prediction methods[J]. N Z J For Sci, 2018, 48:1.DOI:10.1186/s40490-017-0108-0.
[18]
CHEN L, WANG Y Q, REN C Y, et al. Assessment of multi-wavelength SAR and multispectral instrument data for forest aboveground biomass mapping using random forest kriging[J]. For Ecol Manag, 2019, 447:12-25.DOI:10.1016/j.foreco.2019.05.057.
[19]
SILVEIRA E M O, SILVA S H G, ACERBI-JUNIOR F W, et al. Object-based random forest modelling of aboveground forest biomass outperforms a pixel-based approach in a heterogeneous and mountain tropical environment[J]. Int J Appl Earth Obs Geoinformation, 2019, 78:175-188.DOI:10.1016/j.jag.2019.02.004.
[20]
QIN Q Q, WANG H Y, LEI X D, et al. Spatial variability in the amount of forest litter at the local scale in northeastern China: Kriging and co-Kriging approaches to interpolation[J]. Ecol Evol, 2020, 10(2):778-790.DOI:10.1002/ece3.5934.
[21]
CHATTERJEE S, SANTRA P, MAJUMDAR K, et al. Geostatistical approach for management of soil nutrients with special emphasis on different forms of potassium considering their spatial variation in intensive cropping system of West Bengal, India[J]. Environ Monit Assess, 2015, 187(4):183.DOI:10.1007/s10661-015-4414-9.
[22]
卢月明, 王亮, 仇阿根, 等. 一种基于主成分分析的协同克里金插值方法[J]. 测绘通报, 2017(11):51-57,63.
LU Y M, WANG L, QIU A G, et al. A co-Kriging interpolation method based on principal component analysis[J]. Bull Surv Mapp, 2017(11):51-57, 63.DOI:10.13474/j.cnki.11-2246.2017.0347.
[23]
SHEN W J, LI M S, HUANG C Q, et al. Quantifying live aboveground biomass and forest disturbance of mountainous natural and plantation forests in northern Guangdong,China,based on multi-temporal Landsat,PALSAR and field plot data[J]. Remote Sens, 2016, 8(7):595.DOI:10.3390/rs8070595.
[24]
LU D S, CHEN Q, WANG G X, et al. A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems[J]. Int J Digit Earth, 2016, 9(1):63-105.DOI:10.1080/17538947.2014.990526.
[25]
AVTAR R, SAWADA H, TAKEUCHI W, et al. Characterization of forests and deforestation in Cambodia using ALOS/PALSAR observation[J]. Geocarto Int, 2012, 27(2):119-137.DOI:10.1080/10106049.2011.626081.
[26]
宋茜, 范文义. 大兴安岭植被生物量的ALOS PALSAR估算[J]. 应用生态学报, 2011, 22(2):303-308.
SONG Q, FAN W Y. ALOS PALSAR estimation of vegetation biomass in Daxing’anling Region[J]. Chin J Appl Ecol, 2011, 22(2):303-308.DOI:10.13287/j.1001-9332.2011.0074.
[27]
王璟睿, 沈文娟, 李卫正, 等. 基于RapidEye的人工林生物量遥感反演模型性能对比[J]. 西北林学院学报, 2015, 30(6): 196-202.
WANG J R, SHEN W J, LI W Z, et al. Performances comparison of multiple non-linear models for estimating plantations’ biomass based on RapidEye imagery[J]. J Northwest For Univ, 2015, 30(6):196-202.DOI: 10.3969/j.issn.1001-7461.2015.06.36.
[28]
杜虎, 曾馥平, 王克林, 等. 中国南方3种主要人工林生物量和生产力的动态变化[J]. 生态学报, 2014, 34(10):2712-2724.
DU H, ZENG F P, WANG K L, et al. Dynamics of biomass and productivity of three major plantation types in southern China[J]. Acta Ecol Sin, 2014, 34(10):2712-2724.DOI:10.5846/stxb201212121788.
[29]
李明诗, 谭莹, 潘洁, 等. 结合光谱、纹理及地形特征的森林生物量建模研究[J]. 遥感信息, 2006(6):6-9,66.
LI M S, TAN Y, PAN J, et al. Modeling forest aboveground biomass by combining the spectrum, textures with topographic features[J]. Remote Sens Inf, 2006(6):6-9, 66.DOI:10.3969/j.issn.1000-3177.2006.06.003.
[30]
徐婷, 曹林, 佘光辉. 基于Landsat 8 OLI的特征变量优化提取及森林生物量反演[J]. 遥感技术与应用, 2015, 30(2):226-234.
XU T, CAO L, SHE G H. Feature extraction and forest biomass estimation based on Landsat 8 OLI[J]. Remote Sens Technol Appl, 2015, 30(2):226-234. DOI:10.11873/j.issn.1004-0323.2015.2.0226.
[31]
ASLAN A, RAHMAN A F, WARREN M W, et al. Mapping spatial distribution and biomass of coastal wetland vegetation in Indonesian Papua by combining active and passive remotely sensed data[J]. Remote Sens Environ, 2016, 183:65-81.DOI:10.1016/j.rse.2016.04.026.183:65-81.
[32]
ISAAKS E H, SRIVASTAVA R M. An introduction to applied geostatistics[M]. Oxford: Oxford University Press,1989.
[33]
SAKATA S, ASHIDA F, ZAKO M. An efficient algorithm for Kriging approximation and optimization with large-scale sampling data[J]. Comput Methods Appl Mech Eng, 2004, 193(3/5):385-404.DOI:10.1016/j.cma.2003.10.006.
[34]
ZIMMERMAN D L, ZIMMERMAN M B. A comparison of spatial semivariogram estimators and corresponding ordinary Kriging predictors[J]. Technometrics, 1991, 33(1):77-91.DOI:10.1080/00401706.1991.10484771.
[35]
李云, 张王菲, 崔鋆波, 等. 参数优选支持的光学与SAR数据森林地上生物量反演研究[J]. 北京林业大学学报, 2020, 42(10):11-19.
LI Y, ZHANG W F, CUI J B, et al. Inversion exploration on forest aboveground biomass of optical and SAR data supported by parameter optimization method[J]. J Beijing For Univ, 2020, 42(10):11-19.
[36]
ZHAO P P, LU D S, WANG G X, et al. Forest aboveground biomass estimation in Zhejiang Province using the integration of Landsat TM and ALOS PALSAR data[J]. Int J Appl Earth Obs Geoinformation, 2016, 53:1-15.DOI:10.1016/j.jag.2016.08.007.
PDF(2806 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/