Effects of Piriformospora indica on growth and drought resistance in Osmanthus fragrans under water deficit stress

MU Hongna, WANG Wei, FAN Lei, WU Chu, GUO Xiaohua, SUN Taoze

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (2) : 101-106.

PDF(1972 KB)
PDF(1972 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (2) : 101-106. DOI: 10.12302/j.issn.1000-2006.202203014

Effects of Piriformospora indica on growth and drought resistance in Osmanthus fragrans under water deficit stress

Author information +
History +

Abstract

【Objective】 The colonization effects of Piriformospora indica on Osmanthus fragrans under drought stress were analyzed. 【Method】 Two-year seedlings cultivated in pots with soil were used for this study. The experiment design was set up with the following parameters: inoculation (40 mL mycelium of P. indica) + drought (the soil water content is 20%-25% of the maximum field water capacity), inoculation + slight drought (45%-50% of the maximum field water capacity), inoculation + normal irrigation (65%-70% of the maximum field water capacity), control (40 mL inactivator) + drought, control + slight drought, and control + drought, six treatments in all. 【Result】 (1) Results showed that the colonization rate of P. indica was up to 81%. (2) Compared to the controls, the inoculated seedlings presented a better performance in plant height, stem diameter, and dry mass under both slight drought and drought stresses, especially the inoculation + drought groups, which showed significant or even extremely significant differences. (3) The protective enzyme activity of POD and SOD and the contents of proline and soluble sugar increased by 13.8%, 37.9%, 47.6% and 40.7%, respectively. (4) In addition, the MDA content decreased more quickly in the inoculation group than in the control group (control + drought). 【Conclusion】 This study found that the symbiosis of P. indica with O. fragrans played a positive role for O. fragrans seedlings in withstanding the negative effects of drought stress summer, most likely by stimulating the increase of SOD and POD enzyme activities and the significant accumulation of osmoregulatory substances. In contrast, inoculation with P. indica had no significant effect on the growth of O. fragrans under mild drought and normal water supply conditions.

Key words

Piriformospora indica / Osmanthus fragrans / drought stress / osmotic adjustment / drought resistance

Cite this article

Download Citations
MU Hongna , WANG Wei , FAN Lei , et al . Effects of Piriformospora indica on growth and drought resistance in Osmanthus fragrans under water deficit stress[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2023, 47(2): 101-106 https://doi.org/10.12302/j.issn.1000-2006.202203014

References

[1]
母洪娜, 王良桂, 孙陶泽. 桂花多酚氧化酶 (PPO)基因的克隆及表达分析[J]. 分子植物育种, 2017, 15(2): 441-446.
MU H N, WANG L G, SUN T Z. Cloning and expression analysis of PPO gene from sweet Osmanthus(Osmanthus fragrans Lour.)[J], Mol Plant Breed, 2017, 15(2): 441-446. DOI: 10.13271/j.mpb.015.000441.
[2]
WANG L, TAN N N, HU J Y, et al. Analysis of the main active ingredients and bioactivities of essential oil from Osmanthus fragrans var. thunbergii using a complex network approach[J]. BMC Syst Biol, 2017, 11(1): 144. DOI: 10.1186/s12918-017-0523-0.
[3]
XIONG L N, MAO S Q, LU B Y, et al. Osmanthus fragrans flower extract and acteoside protect against d-galactose-induced aging in an ICR mouse model[J]. J Med Food, 2016, 19(1): 54-61. DOI: 10.1089/jmf.2015.3462.
[4]
MAR A, PRIPDEEVECH P. Volatile components of crude extracts of Osmanthus fragrans flowers and their antibacterial and antifungal activities[J]. Chem Nat Compd, 2016, 52(6): 1106-1109. DOI: 10.1007/s10600-016-1876-0.
[5]
尹伟, 郁阳, 马秋丽, 等. 桂花叶的化学成分及抗肿瘤活性研究[J]. 热带亚热带植物学报, 2018, 26(2): 178-184.
YIN W, YU Y, MA Q L, et al. Study on chemical constituents and antitumor activities of leaves of Osmanthus fragrans[J]. J Trop Subtrop Bot, 2018, 26(2): 178-184. DOI: 10.11926/jtsb.3786.
[6]
崔朋飞, 朱先奇, 李玮. 中国农业碳排放的动态演进与影响因素分析[J]. 世界农业, 2018(4): 127-134.
CUI P F, ZHU X Q, LI W. Dynamic evolution and influencing factors of agricultural carbon emissions in China[J]. World Agric, 2018(4): 127-134. DOI: 10.13856/j.cn11-1097/s.2018.04.019.
[7]
姜华, 毕玉芬, 陈连仙, 等. 旱作条件下紫花苜蓿生理特性的研究[J]. 草地学报, 2012, 20(6): 1077-1080.
JIANG H, BI Y F, CHEN L X, et al. Physiological characteristics of alfalfa under dry-farming conditions[J]. Acta Agrestia Sin, 2012, 20(6): 1077-1080. DOI: 10.11733/j.issn.1007-0435.2012.06.015.
[8]
VERMA S, VARMA A, REXER K H, et al. Piriformospora indica, Gen. et sp. nov., a new root-colonizing fungus[J]. Mycologia, 1998, 90(5): 896-903. DOI: 10.2307/3761331.
[9]
SUN C, JOHNSONA J M, CAI D G, et al. Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein[J]. J Plant Physiol, 2010, 167(12): 1009-1017. DOI: 10.1016/j.jplph.2010.02.013.
[10]
WALLER F, ACHATZ B, BALTRUSCHAT H, et al. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance and higher yield[J]. Proc Natl Acad Sci USA, 2005, 102(38): 13386-13391. DOI: 10.1073/pnas.0504423102.
[11]
GHABOOLI M, KHATABI B, AHMADI F S, et al. Proteomics study reveals the molecular mechanisms underlying water stress tolerance induced by Piriformospora indica in barley[J]. J Proteom, 2013, 94: 289-301. DOI: 10.1016/j.jprot.2013.09.017.
[12]
武美燕, 蒿若超, 张文英. 印度梨形孢真菌对干旱胁迫下紫花苜蓿生长及抗旱性的影响[J]. 草业学报, 2016, 25(5): 78-86.
WU M Y, HAO R C, ZHANG W Y. Effects of Piriformospora indica fungus on growth and drought resistance in alfalfa under water deficit stress[J]. Acta Prataculturae Sin, 2016, 25(5): 78-86. DOI: 10.11686/cyxb2015366.
[13]
主朋月, 韩冰, 王晓阳, 等. 印度梨形孢联合紫花苜蓿修复土壤镉污染研究[J]. 环境科学与技术, 2019, 42(6): 21-27.
ZHU P Y, HAN B, WANG X Y, et al. Study on the remediation of cadmium pollution in soil by combination of Medicago sativa and Piriformospora indica[J]. Environ Sci & Technol, 2019, 42(6): 21-27. DOI: 10.19672/j.cnki.1003-6504.2019.06.003.
[14]
杨芮. 印度梨形孢诱导红掌抗干旱和低温胁迫响应[D]. 福州: 福建农林大学, 2018.
YANG R. In response to drought and low temperature stress induced by piriformospora indica[D]. Fuzhou: Fujian Agriculture and Forestry University, 2018.
[15]
袁芳. 印度梨形孢提高毛竹耐盐能力及其机理的初步研究[D]. 杭州: 浙江农林大学, 2019.
YUAN F. Preliminary study on improving the salt tolerance of Phyllostachys edulis by Piriformospora indica and its mechanisms[D]. Hangzhou: Zhejiang A & F University, 2019.
[16]
PHILLIPS J M, HAYMAN D S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection[J]. Trans Br Mycol Soc, 1970, 55(1): 158-IN18. DOI: 10.1016/S0007-1536(70)80110-3.
[17]
苍晶, 赵会杰. 植物生理学实验教程[M]. 北京: 高等教育出版社, 2013.
CANG J, ZHAO H J. Experimental course of plant physiology[M]. Beijing: Higher Education Press, 2013.
[18]
韦巧, 武美燕, 张文英. 不同磷水平下印度梨形孢对生菜生长及磷素吸收利用的影响[J]. 河南农业科学, 2017, 46(1): 100-104.
WEI Q, WU M Y, ZHANG W Y. Effects of Piriformospora indica on growth and phosphorus absoption of lettuce under different phosphorus levels[J]. J Henan Agric Sci, 2017, 46(1): 100-104. DOI: 10.15933/j.cnki.1004-3268.2017.01.018.
[19]
邢鸿林, 刘天义, 扎史都吉, 等. 光照与氮添加对红皮云杉幼树生长与叶形态功能的影响[J]. 森林工程, 2022, 38(4): 1-9.
XING H L, LIU T Y, Zhashi Duji, et al. Effects of light and nitrogen addition on the tree growth, needle morphological and functions of Picea koraiensis saplings[J]. Forest Engineering, 2022, 38(4): 1-9.
[20]
魏媛, 张金池, 尹晓阳, 等. 华山松菌根化幼苗的抗旱特性[J]. 南京林业大学学报(自然科学版), 2007, 31(4):69-72.
WEI Y, ZHANG J C, YIN X Y, et al. Characteristics of drought tolerance in mycorrhizal fungi seedlings of Pinus armandii franch[J]. J Nanjing For Univ (Nat Sci Ed), 2007, 31(4):69-72. DOI: 10.3969/j.issn.1000-2006.2007.04.015.
[21]
赵金梅, 周禾, 王秀艳. 水分胁迫下苜蓿品种抗旱生理生化指标变化及其相互关系[J]. 草地学报, 2005, 13(3): 184-189.
ZHAO J M, ZHOU H, WANG X Y. Effect of water stress on physiological and biochemical process of alfalfa varieties[J]. Acta Agrestia Sin, 2005, 13(3): 184-189. DOI: 10.11733/j.issn.1007-0435.2005.03.003.
[22]
关追追, 赵江宁, 邱权, 等. 楸树人工林生长规律及其最优生长模型研究: 以河南省洛宁县楸树为例[J]. 森林工程, 2021, 37(2): 1-10.
GUAN Z Z, ZHAO J N, QIU Q, et al. Growth law and optimal growth model of Catalpa bungei plantation: a case study of Catalpa bungei in Luoning County, Henan Province[J]. Forest Engineering, 2021, 37(2): 1-10.
[23]
XU L, WANG A A, WANG J, et al. Piriformospora indica confers drought tolerance on Zea mays L. through enhancement of antioxidant activity and expression of drought-related genes[J]. Crop J, 2017, 5(3): 251-258. DOI: 10.1016/j.cj.2016.10.002.
[24]
HOSSEINI F, MOSADDEGHI M R, DEXTER A R, et al. Maize water status and physiological traits as affected by root endophytic fungus Piriformospora indica under combined drought and mechanical stresses[J]. Planta, 2018, 247(5): 1229-1245. DOI: 10.1007/s00425-018-2861-6.
[25]
ZGALLAÏ H, STEPPE K, LEMEUR R. Effects of different levels of water stress on leaf water potential, stomatal resistance, protein and chlorophyll content and certain anti-oxidative enzymes in tomato plants[J]. J Integr Plant Biol, 2006, 48(6): 679-685. DOI: 10.1111/j.1744-7909.2006.00272.x.
[26]
任爱天, 鲁为华, 马春晖, 等. 接种AM真菌对紫花苜蓿抗旱性的影响[J]. 新疆农业科学, 2014, 51(9): 1677-1685.
REN A T, LU W H, MA C H, et al. Effect of arbuscular mycorrhiza fungi on drought tolerance of Medicago sativa L.[J]. Xinjiang Agric Sci, 2014, 51(9): 1677-1685. DOI: 10.6048/j.issn.1001-4330.2014.09.016.
PDF(1972 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/