Effects of fertilization regime and rate on growth and needle nutrient level of Pinus armandii seedling

FENG Wei, SHAN Changdan, ZHANG Hui, LIU Jiaman, LIU Guoang, YAO Zengyu

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (3) : 191-198.

PDF(1840 KB)
PDF(1840 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (3) : 191-198. DOI: 10.12302/j.issn.1000-2006.202203029

Effects of fertilization regime and rate on growth and needle nutrient level of Pinus armandii seedling

Author information +
History +

Abstract

【Objective】 The effects of different fertilization regimes and rates on the growth of Pinus armandii seedlings and the contents of mineral nutrient elements and non-structural carbohydrates in their needles were investigated to provide a scientific reference for the cultivation of high-quality seedlings with abundant nutrition reserves. 【Method】 P. armandii seedlings were separately reared in the presence of four different doses of N (100, 200, 300 and 400 mg N per seedling) using a compound fertilizer (25% N, 10% P2O5 and 20% K2O) under conventional and exponential fertilization regimes. The control setup was not treated with the fertilizer. The fertilizer was applied 12 times at 2-week intervals. The shoot height, root collar diameter, biomass and the contents of N, P, K, soluble sugar, starch and non-structural carbohydrates in the needles were measured after two weeks of the last application of the fertilizer. 【Result】 The shoot height, root collar diameter and biomass increased at first but subsequently decreased as the rate of the fertilizer was increased, under both application regimes. The shoot height, root collar diameter and biomass were the highest at the dose of 300 mg N per seedling under the exponential fertilization regime, being 1.29, 1.15 and 1.53 fold those of the control. Fertilization enhanced the content of N in the needles, and the N content increased as the rate of the fertilizer was increased. The N content in the needles was higher under the exponential fertilization regime than under the conventional fertilization regime for the same doses of the fertilizer. There were no significant differences in the P content of the needles. The K content in the needles increased at increasing rates of the fertilizer under the conventional fertilization regime. However, the K content increased at first but decreased subsequently at increasing rates of the fertilizer under the exponential fertilization regime. The content of soluble sugar decreased significantly following fertilization, and the contents decreased at first but increased subsequently at increasing rates of the fertilizer. The contents of starch and non-structural carbohydrates in the needles increased significantly under the rational fertilization regime, and exponential fertilization was more preferable. 【Conclusion】 The exponential application of 1.2 g of the fertilizer (300, 120 and 240 mg of N, P2O5 and K2O, respectively) per seedling was found to be the optimal fertilization regimen for cultivating high-quality P. armandii seedlings.

Key words

Pinus armandii / high-quality cultivation / exponential fertilization / nutrient accumulation / non-structural carbohydrates

Cite this article

Download Citations
FENG Wei , SHAN Changdan , ZHANG Hui , et al . Effects of fertilization regime and rate on growth and needle nutrient level of Pinus armandii seedling[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(3): 191-198 https://doi.org/10.12302/j.issn.1000-2006.202203029

References

[1]
付奔, 胡关东, 杨帆, 等. 云南干旱“常态化”的分析[J]. 水文, 2014, 34(4): 82-85.
FU B, HU G D, YANG F, et al. Analysis of drought normalization in Yunnan[J]. J Chin Hydrol. 2014, 34(4): 82-85.
[2]
施化云, 王雁. 基于功能指数法的云南省不同区域造林成活率影响因子研究[J]. 林业调查规划, 2018, 43(3): 28-33.
SHI H Y, WANG Y. Impact factor on survival rate of forestation in different regions of Yunnan Province based on function index method[J]. For Invent Plan, 2018, 43(3): 28-33. DOI:10.3969/j.issn.1671-3168.2018.03.006.
[3]
POKHAREL P, CHANG S X. Exponential fertilization promotes seedling growth by increasing nitrogen retranslocation in trembling aspen planted for oil sands reclamation[J]. Forest Ecol Manag, 2016, 372: 35-43. DOI: 10.1016/j.foreco.2016.03.034.
[4]
POKHAREL P, KWAK J, CHANG S X. Growth and nitrogen uptake of jack pine seedlings in response to exponential fertilization and weed control in reclaimed soil[J]. Biol Fert Soil, 2017, 53(6): 701-713. DOI: 10.1007/s00374-017-1213-1.
[5]
TIMMER V R. Exponential nutrient loading: a new fertilization technique to improve seedling performance on competitive sites[J]. New Forests, 1997, 13(3): 279-299. DOI: 10.1023/A:1006502830067.
[6]
INGESTAD T, LUND A B. Theory and techniques for steady state mineral nutrition and growth of plants[J]. Scand J Forest Res, 1986, 1(4): 439-453. DOI: 10.1080/02827588609382436.
[7]
CLOSE D C, BAIL I, HUNTER S, et al. Effects of exponential nutrient-loading on morphological and nitrogen characteristics and on after-planting performance of Eucalyptus globulus seedlings[J]. Forest Ecol Manag, 2005, 205(3): 397-403. DOI: 10.1016/j.foreco.2004.10.041.
[8]
SALIFU K F, TIMMER V R. Optimizing nitrogen loading of Picea mariana seedlings during nursery culture[J]. Can J Forest Res, 2003, 33(7): 1287-1294. DOI: 10.1139/x03-057.
[9]
季艳红, 汤文华, 窦全琴, 等. 施肥对薄壳山核桃容器苗生长及养分积累的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(6): 47-56.
JI Y H, TANG W H, DOU Q Q, et al. Effects of fertilizer application on seedling growth and nutrient accumulation in Carya illinoinensis container seedlings[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(6): 47-56. DOI: 10.12302/j.issn.1000-2006.202009051.
[10]
CHEN L, WANG C, DELL B, et al. Growth and nutrient dynamics of Betula alnoides seedlings under exponential fertilization[J]. J Forestry Res, 2018, 29(1): 111-119. DOI: 10.1080/00380768.2012.708879.
[11]
CHEN L, ZENG J, JIA H, et al. Growth and nutrient uptake dynamics of Mytilaria laosensis seedlings under exponential and conventional fertilizations[J]. Soil Sci Plant Nutr, 2012, 58(5): 618-626. DOI: 10.1080/00380768.2012.708879.
[12]
WU J S, LIN H P, GUO L H, et al. Biomass and nutrients variation of Chinese fir rooted cuttings under conventional and exponential fertilization regimes of nitrogen[J]. Forests, 2019, 10(8): 615. DOI: 10.3390/f10080615..
[13]
GUO Q X, LI J Y, ZHANG Y X, et al. Species-specific competition and N fertilization regulate non-structural carbohydrate contents in two Larix species[J]. Forest Ecol Manag, 2016, 364: 60-69. DOI: 10.1016/j.foreco.2016.01.007.
[14]
ADAMS H D, GERMINO M J, BRESHEARS D D, et al. Nonstructural leaf carbohydrate dynamics of during drought-induced tree mortality reveal role for carbon metabolism in mortality mechanism[J]. New Phytol, 2013, 197(4): 1142-1151. DOI: 10.1111/nph.12102.
[15]
张婉婷, 单立山, 李毅, 等. 氮添加与降雨变化对红砂幼苗非结构性碳水化合物的影响[J]. 生态学杂志, 2020, 39(3): 803-811.
ZHANG W T, SHAN L S, LI Y, et al. Effects of nitrogen addition and precipitation change on non-structural carbohydrates in Reaumuria soongorica seedlings[J]. Chin J Ecol, 2020, 39(3): 803-811. DOI:10.13292/j.1000-4890.202003.017.
[16]
王凯, 雷虹, 夏扬, 等. 杨树幼苗非结构性碳水化合物对增加降水和氮添加的响应[J]. 应用生态学报, 2017, 28(2): 399-407.
WANG K, LEI H, XIA Y, et al. Responses of non-structural carbohydrates of poplar seedlings to increased precipitation and nitrogen addition[J]. Chin J Appl Ecol, 2017, 28(2): 399-407. DOI: 10.13287/j.1001-9332.201702.012.
[17]
王睿照, 毛沂新, 云丽丽, 等. 氮添加对蒙古栎叶片碳氮磷化学计量与非结构性碳水化合物的影响[J]. 生态学杂志, 2022, 41(7): 1-10.
WANG R Z, MAO Y X, YUN L L, et al. Effects of nitrogen addition on leaf carbon, nitrogen and phosphorus stoichiometry and nonstructural carbohydrates in Mongolian oak (Quercus mongolica) stands[J]. Chin J Ecol, 2022, 41(7): 1-10. DOI: 10.13292/j.1000-4890.202207.009.
[18]
魏红旭, 徐程扬, 马履一, 等. 苗木晚季施肥研究现状与展望[J]. 林业科学, 2011, 47(7): 172-180.
WEI H X, XU C Y, MA L Y, et al. Current development and prospect on late-season fertilization to tree seedling[J]. Sci Silv Sin, 2011, 47(7): 172-180.
[19]
丰伟, 陈诗, 单昌丹, 等. 施肥对华山松容器苗根系形态及针叶生理特性的调控作用[J]. 植物科学学报, 2023, 41(4): 521-530.
FENG W, CHEN S, SHAN C D, et al. Regulatory effects of fertilization on root morphology and needle physiological characteristics of Pinus armandii Franch. container seedlings[J]. Plant Sci J, 2023, 41(4): 521-530. DOI: 10.11913/PSJ.2095-0837.22283.
[20]
潘泰臣, 张胜利, 于金鑫, 等. 基于二次回归通用旋转组合设计的华山松容器育苗基质研究[J]. 西北林学院学报, 2020, 35(5): 85-90.
PAN T C, ZHANG S L, YU J X, et al. Substrate composition and fertilizer formulation for breeding container seedlings of Pinus armandii based on quadratic regression combination design[J]. J Northwest For Univ, 2020, 35(5): 85-90. DOI: 10.3969/j.issn.1001-7461.2020.05.13.
[21]
张青青, 杨永洁, 王慷林, 等. 基质及施肥对华山松容器苗生长的影响[J]. 江西农业大学学报, 2019, 41(6): 1113-1119.
ZHANG Q Q, YANG Y J, WANG K L, et al. Effects of substrate and fertilization on the growth of Pinus armandii container seedlings[J]. J Jiangxi Agr Univ, 2019, 41(6): 1113-1119. DOI: 10.13836/j.jjau.2019130.
[22]
魏媛, 张金池, 尹晓阳, 等. 华山松菌根化幼苗的抗旱特性[J]. 南京林业大学学报(自然科学版), 2007, 31(4): 69-72.
WEI Y, ZHANG J C, YIN X Y, et al. Characteristics of drought tolerance in mycorrhizal fungi seedlings of Pinus armandii Franch[J]. J Nanjing For Univ (Nat Sci Ed), 2007, 31(4): 69-72.
[23]
HONG Z, GUO J Y, ZHANG N N, et al. Polysaccharide, proline, and anti-oxidation enzyme activities of Thailand rosewood (Dalbergia cochinchinensis) seedlings exposed to exponential fertilization[J]. J Forestry Res, 2022, 33(1): 75-87. DOI: 10.1007/s11676-021-01300-4.
[24]
杨阳, 施皓然, 及利, 等. 指数施肥对紫椴实生苗生长和根系形态的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(2): 91-97.
YANG Y, SHI H R, JI L, et al. Effects of exponential fertilization on growth and root morphology of Tilia amurensis seedlings[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(2): 91-97. DOI: 10.3969/j.issn.1000-2006.201811061.
[25]
李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.
LI H S. Principles and Techniques of plant physiological and biochemical experiments[M]. Beijing: Higher Education Press, 2000.
[26]
倪铭, 高振洲, 吴文, 等. 不同氮素施肥方法对纳塔栎容器苗生长及非结构性碳水化合物积累的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(4): 107-113.
NI M, GAO Z Z, WU W, et al. Effects of different nitrogen fertilization methods on growth and non-structure carbohydrate accumulation of Quercus nuttallii seedlings[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(4): 107-113. DOI: 10.12302/j.issn.1000-2006.202005040.
[27]
HU Y L, FAN H H, XUAN H F, et al. Distinct growth and nutrient status responses to fertilization regimes in two generations of Chinese fir seedlings[J]. Forests, 2019, 10(9): 719. DOI: 10.3390/f10090719.
[28]
RYTTER L, ERICSSON T, RYTTE R. Effects of demand-driven fertilization on nutrient use, root: plant ratio and field performance of Betula pendula and Picea abies[J]. Scand J Forest Res, 2003, 18(5): 401-415. DOI: 10.1080/02827580310001931.
[29]
王益明, 卢艺, 张慧, 等. 指数施肥对美国山核桃幼苗生长及叶片养分含量的影响[J]. 中国土壤与肥料, 2018(6): 136-140.
WANG Y M, LU Y, ZHANG H, et al. Effects of exponential fertilization on growth and nutrient content in leaf of Carya illinoensis seedlings[J]. Chin Soil Fert, 2018(6): 136-140. DOI: 10.13759/j.cnki.dlxb.2018.09.005.
[30]
李茂, 洪凯, 许珊珊, 等. 指数施肥对杉木优良无性系幼苗生长和养分含量的影响[J]. 应用与环境生物学报, 2020, 26(6): 1490-1497.
LI M, HONG K, XU S S, et al. Effects of exponential fertilization on Cunninghamia lanceolata superior clone seedling growth and nutrient content[J]. Chin J Appl Environ Biol, 2020, 26(6): 1490-1497. DOI: 10.19675/j.cnki.1006-687x.2019.11039.
[31]
李毓琦, 刘小金, 徐大平, 等. 不同施肥量对降香黄檀苗木生长和叶片养分状况的影响[J]. 热带作物学报, 2021, 42(2): 481-487.
LI Y Q, LIU X J, XU D P, et al. Growth and foliar nutrition of Dalbergia odorifera seedlings under exponential fertilization[J]. Chin J Trop Crop, 2021, 42(2): 481-487. DOI: 10.3969/j.issn.1000-2561.2021.02.025.
[32]
PENG Z T, CHEN M X, HUANG Z J, et al. Non-Structural carbohydrates regulated by nitrogen and phosphorus fertilization varied with organs and fertilizer levels in Moringa oleifera seedlings[J]. J Plant Growth Regul, 2021, 40(4): 1777-1786. DOI: 10.1007/s00344-020-10228-8.
PDF(1840 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/