Interactive effects of stand development and seasonality on soil arthropod community in poplar plantations

LIU Xingjie, WU Qiqi, LI Yuanyuan, RUAN Honghua, DING Xuenong, CAO Guohua, SHEN Caiqin

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (5) : 224-230.

PDF(1664 KB)
PDF(1664 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (5) : 224-230. DOI: 10.12302/j.issn.1000-2006.202203050

Interactive effects of stand development and seasonality on soil arthropod community in poplar plantations

Author information +
History +

Abstract

【Objective】Soil arthropods are important components of soil biodiversity and play a critical role in ecosystems. Although afforestation with poplar plantations can improve soil properties in the saline soils of coastal area, little is known about the impact of plantation stand development on soil arthropods.【Method】In this study, we determined the community dynamics of soil dwelling arthropods across three aged poplar plantations (i.e., 5-, 10-, and 21-year-old) through a randomized block design with three repeated blocks over the course of one year, which included four sampling dates (i.e., spring, May; summer, August; autumn, November; and winter, February) in a coastal area of northern Jiangsu Province, China. 【Result】Prostigmata, Oribatida, Hymenoptera, Collembola, and Coleoptera comprised the dominant orders and together accounted for 89.4% of the total individuals. On average, both total number and those richness were the highest in the 10-year-old stands and the lowest in the 5-year-old stands and were higher in May and August than species in November and February. The abundance, Order richness, and community composition of soil arthropods were significantly affected by stand age, sampling date and their interaction. The total abundance showed strong age-dependent trends in May and August but not in February and November. Order richness was the highest in both 10- and 21-year-old stands observed in May and August. Permutational multivariate analysis of variance demonstrated that Order composition also differed strongly with sampling date and stand age, with 10-year-old stands sampled in May distinct from other sampling dates. 【Conclusion】The abundance and richness of soil arthropods in 10-year-old stands were higher than number in 5-year-old stands, and impact of stand age on the soil arthropod community depended on the seasonal changes. Our results highlight that both stand development and climate seasonality act strongly on soil arthropod community dynamics in the poplar plantations, while the related mechanisms need a further study.

Key words

soil fauna / saline soil / Collembola / Oribatida / Prostigmata / biodiversity

Cite this article

Download Citations
LIU Xingjie , WU Qiqi , LI Yuanyuan , et al . Interactive effects of stand development and seasonality on soil arthropod community in poplar plantations[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2023, 47(5): 224-230 https://doi.org/10.12302/j.issn.1000-2006.202203050

References

[1]
龙秋宁, 王润松, 徐涵湄, 等. 沼液与生物炭联合施用对杨树人工林土壤甲螨密度的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(3):211-215.
LONG Q N, WANG R S, XU H M, et al. Effects of biogas slurry and biochar on oribatida density in poplar plantation[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(3):211-215.DOI:10.3969/j. issn.1000-2006.201904023.
[2]
范换, 王邵军, 阮宏华, 等. 苏北沿海不同土地类型土壤动物群落及其对凋落物分解的影响[J]. 南京林业大学学报(自然科学版), 2014, 38(3):1-7.
FAN H, WANG S J, RUAN H H, et al. Effects of soil fauna on litter decomposition and its community structure under different land use patterns in coastal region of northern Jiangsu Province[J]. J Nanjing For Univ (Nat Sci Ed), 2014, 38(3):1-7.DOI:10.3969/j.issn.1000-2006.2014.03.001.
[3]
高梅香, 张超, 乔志宏, 等. 小兴安岭阔叶红松林地表甲虫Metacommunity格局[J]. 生态学报, 2018, 38(16):5636-5648.
GAO M X, ZHANG C, QIAO Z H, et al. Metacommunity patterns of ground-beetle assemblages in two mixed broad-leaved Korean pine (Pinus koraiensis) forests in the Xiao Xing’an Mountains[J]. Acta Ecol Sin, 2018, 38(16):5636-5648.DOI:10.5846/stxb201707301371.
[4]
SIEPEL H, BOBBINK R, VAN DE RIET B P, et al. Long-term effects of liming on soil physico-chemical properties and micro-arthropod communities in Scotch pine forest[J]. Biol Fertil Soils, 2019, 55(7):675-683.DOI:10.1007/s00374-019-01378-3.
[5]
王梦茹, 傅声雷, 徐海翔, 等. 陆地生态系统中马陆的生态功能[J]. 生物多样性, 2018, 26(10):1051-1059.
Abstract
马陆是陆地生态系统中物种多样性极高的大型土壤无脊椎动物类群。作为营腐生动物, 马陆在陆地生态系统中具有不可替代的重要功能。通过大量取食及随后的肠道过程, 马陆在很大程度上决定着陆地生态系统凋落物的破碎、转化和分解过程, 从而驱动碳和关键养分元素的循环周转。然而, 目前对马陆生态功能的研究还非常有限, 远远落后于其他土壤动物类群(如蚯蚓等)。本文初步总结了马陆的生态功能: (1)通过破碎、取食凋落物来加速凋落物的分解。马陆偏好取食半分解的凋落物, 其同化效率受到凋落物来源、温度和凋落物中微生物含量的影响。(2)主要通过取食和排泄等活动影响养分循环。但对于马陆如何影响土壤碳循环, 存在两种不同的观点: 一是马陆粪球的分解速率比凋落物更快, 加速了碳的循环; 二是马陆粪球更难分解, 有助于碳的固存和稳定。马陆破碎凋落物后, 凋落物释放氮素进入土壤。此外, 马陆的活动也影响土壤磷的循环, 提高土壤中有效磷的含量。(3)调控微生物特性, 与蚯蚓也有互作关系。通过以上三个方面的总结, 展望了未来马陆的主要研究方向, 以期引起更多思考和研究。
WANG M R, FU S L, XU H X, et al. Ecological functions of millipedes in the terrestrial ecosystem[J]. Biodivers Sci, 2018, 26(10):1051-1059.DOI: 10.17520/biods.2018086.
[6]
周磊, 魏雪, 王长庭, 等. 高寒草地小型土壤节肢动物群落特征及其对草地退化的指示作用[J]. 草业学报, 2022, 31(3):34-46.
Abstract
小型土壤节肢动物是草地生态系统的重要组成部分,并对环境变化具有高度敏感性。为了查明小型土壤节肢动物群落对高寒草地退化的响应及其在退化过程中的指示作用,在川西北地区选取了未退化、轻度退化、中度退化和重度退化的高寒草地,于2019和2020年的7月对小型土壤节肢动物群落进行调查。采集各样地0~20 cm的土样,用干漏斗法(Tullgren法)分离小型土壤节肢动物。结果为:1)小型土壤节肢动物群落组成结构和优势类群在不同退化阶段高寒草地间存在差异,群落密度、类群数和Shannon-Wiener多样性指数均随退化程度加重呈先增加后下降的趋势(P<0.01),而Simpson优势度指数则先下降后上升(P<0.01);2)不同类群的小型土壤节肢动物对退化的响应不同,随高寒草地退化程度的加重,螨类密度持续降低(P<0.01),而跳虫密度则呈先增加后下降的趋势(P<0.01),表明高寒草地退化对螨类具有持续抑制作用,而对跳虫则是先促进后抑制;3)土壤有机碳(SOC)、湿度、全氮(TN)、pH、碳氮比(C/N),以及植物的群落高度和物种数是影响小型土壤节肢动物群落密度及多样性的主要因子(P<0.001, 0.01或0.05),其中土壤容重、SOC、TN、C/N和pH对螨类数量有显著影响(P<0.001, 0.01或0.05),而各因子对跳虫均无显著影响(P>0.05)。研究表明,小型土壤节肢动物群落的组成结构、密度及多样性对高寒草地响应敏感,并受土壤等环境因子影响;而螨类密度在退化过程中持续下降,可以用作高寒草地退化的指示生物。
ZHOU L, WEI X, WANG C T, et al. Differences in soil microarthropod community structure in alpine grasslands with differing degrees of degradation[J]. Acta Prataculturae Sin, 2022, 31(3):34-46.DOI:10.11686/cyxb2021266.
[7]
DE DEYN G B, RAAIJMAKERS C E, ZOOMER H R, et al. Soil invertebrate fauna enhances grassland succession and diversity[J]. Nature, 2003, 422(6933):711-713.DOI:10.1038/nature01548.
[8]
COLE R J, SELMANTS P, KHAN S, et al. Litter dynamics recover faster than arthropod biodiversity during tropical forest succession[J]. Biotropica, 2020, 52(1):22-33.DOI:10.1111/btp.12740.
Litterfall and litter decomposition are key elements of nutrient cycling in tropical forests, a process in which decomposer communities such as macro‐arthropods play a critical role. Understanding the rate and extent to which ecosystem function and biodiversity recover during succession is useful to managing the growing area of tropical successional forest globally. Using a replicated chronosequence of forest succession (5–15, 15–30, 30–45 years, and primary forest) on abandoned pastures in lowland tropical wet forest, we examined litterfall, litter chemistry, and effects of macro‐arthropod exclusion on decomposition of two litter types (primary and 5‐ to 15‐years‐old secondary forest). Further, we assessed macro‐arthropod diversity and community composition across the chronosequence. Overstory cover, litterfall, and litter nutrients reached levels similar to primary forest within 15–30 years. Young secondary forest litter (5–15 years) had lower initial N and P content, higher C:N, and decayed 60 percent faster than primary forest litter. The presence of macro‐arthropods strongly mediated decomposition and nutrient release rates, increasing litter mass loss by 35–44 percent, N released by 53 percent, and P release by 84 percent. Forest age had no effect on soil nutrients, rates of litter decomposition, nutrient release, or macro‐arthropod influence. In contrast, abundance and community composition of macro‐arthropods remained significantly lower and distinct in all ages of secondary compared with primary forest. Order richness was lower in 5–15 years of secondary compared with primary forest. Our results suggest that in highly productive tropical wet forest, functional recovery of litter dynamics precedes recovery of decomposer community structure and biodiversity.
[9]
SALMON S, MANTEL J, FRIZZERA L, et al. Changes in humus forms and soil animal communities in two developmental phases of Norway spruce on an acidic substrate[J]. For Ecol Manag, 2006, 237(1-3):47-56.DOI:10.1016/j.foreco.2006.09.089.
[10]
ZAITSEV A S, CHAUVAT M, PFLUG A, et al. Oribatid mite diversity and community dynamics in a spruce chronosequence[J]. Soil Biol Biochem, 2002, 34(12):1919-1927.DOI:10.1016/S0038-0717(02)00208-0.
[11]
BOKHORST S, WARDLE D A, NILSSON M C, et al. Impact of understory mosses and dwarf shrubs on soil micro-arthropods in a boreal forest chronosequence[J]. Plant Soil, 2014, 379(1):121-133.DOI:10.1007/s11104-014-2055-3.
[12]
CHIKOSKI J M, FERGUSON S H, MEYER L. Effects of water addition on soil arthropods and soil characteristics in a precipitation-limited environment[J]. Acta Oecologica, 2006, 30(2):203-211.DOI:10.1016/j.actao.2006.04.005.
[13]
WU P F, LIU S R, LIU X L. Composition and spatio-temporal changes of soil macroinvertebrates in the biodiversity hotspot of northern Hengduanshan Mountains,China[J]. Plant Soil, 2012, 357(1):321-338.DOI:10.1007/s11104-012-1166-y.
[14]
LIU R T, ZHAO H L, ZHAO X Y, et al. Facilitative effects of shrubs in shifting sand on soil macro-faunal community in Horqin Sand Land of Inner Mongolia,northern China[J]. Eur J Soil Biol, 2011, 47(5):316-321.DOI:10.1016/j.ejsobi.2011.07.006.
[15]
BASSET Y, CIZEK L, CUÉNOUD P, et al. Arthropod distribution in a tropical rainforest:tackling a four dimensional puzzle[J]. PLoS One, 2015, 10(12):e0144110.DOI:10.1371/journal.pone.0144110.
[16]
LIU R T, ZHU F, SONG N P, et al. Seasonal distribution and diversity of ground arthropods in microhabitats following a shrub plantation age sequence in desertified steppe[J]. PLoS One, 2013, 8(10):e77962.DOI:10.1371/journal.pone.0077962.
[17]
GRGIC T, KOS I. Influence of forest development phase on centipede diversity in managed beech forests in Slovenia[J]. Biodivers Conserv, 2005, 14(8):1841-1862.DOI:10.1007/s10531-004-1040-1.
[18]
SARTORI F, LAL R, EBINGER M H, et al. Changes in soil carbon and nutrient pools along a chronosequence of poplar plantations in the Columbia Plateau,Oregon,USA[J]. Agric Ecosyst Environ, 2007, 122(3):325-339.DOI:10.1016/j.agee.2007.01.026.
[19]
王洪, 许跃华, 张金池, 等. 苏北泥质海岸盐碱地杨树纯林土壤的改良效应[J]. 中国水土保持科学, 2013, 11(1):65-68.
WANG H, XU Y H, ZHANG J C, et al. Study on soil improvement effect of the Populus tomentos pure forest of saline land on the muddy sea-coast in northern Jiangsu Province[J]. Sci Soil Water Conserv, 2013, 11(1):65-68.DOI:10.16843/j.sswc.2013.01.010.
[20]
MUELLER-DOMBOIS D, ELLENBERG H. Aims and methods of vegetation ecology[M]. New York: Wiley, 1974.
[21]
周丹燕, 卜丹蓉, 葛之葳, 等. 氮添加对沿海不同林龄杨树人工林土壤动物群落的影响[J]. 生态学杂志, 2015, 34(9):2553-2560.
Abstract
大气氮沉降是当前全球性的环境问题,土壤动物对环境变化反应敏感,氮沉降可能显著影响森林土壤动物群落结构。从2012年5月起,在东台林场3个不同林龄(7、11、18年生)杨树人工林(黑杨派无性系I<sub>35</sub>,Populus deltoides cv. I<sub>35</sub>)进行野外模拟氮沉降试验,共设置5个处理,即对照、5、10、15、30 g N&middot;m<sup>-2</sup>&middot;a<sup>-1</sup>。在氮添加试验2年后,探讨氮沉降对不同林龄杨树人工林土壤动物群落的影响。结果表明:随林龄增加,土壤动物群落密度增加,但土壤动物类群数在11年生林最多;土壤动物密度随氮浓度的升高先增加后减少,在15 g N&middot;m<sup>-2</sup>&middot;a<sup>-1</sup>氮添加时达到最高值,并与土壤总有机碳、全氮显著相关;氮添加对土壤动物多样性的影响仅在11年生林表现显著,土壤动物群落多样性和均匀度随着施氮浓度增加呈下降趋势,优势度则完全相反。氮添加可能通过改变土壤营养状况显著影响土壤动物群落结构,中等浓度氮添加对土壤动物群落有促进作用,高浓度氮添加则有抑制作用。
ZHOU D Y, BU D R, GE Z W, et al. Effects of nitrogen addition on soil fauna in poplar plantation with different ages in a coastal area of eastern China[J]. Chin J Ecol, 2015, 34(9):2553-2560.DOI:10.13292/j.1000-4890.2015.0229.
[22]
尹文英, 胡圣豪, 沈韫芬, 等. 中国土壤动物检索图鉴[M]. 北京: 科学出版社, 1998.
YIN W Y, HU S H, SHEN W F, et al. Pictorial keys to soil animals of China[M]. Beijing: Science Press, 1998.
[23]
PIELOU E C. The measurement of diversity in different types of biological collections[J]. J Theor Biol, 1966, 13:131-144.DOI:10.1016/0022-5193(66)90013-0.
[24]
WHITTAKER R H. Evolution and measurement of species diversity[J]. Taxon, 1972, 21(2/3):213-251.DOI:10.2307/1218190.
Given a resource gradient (e.g. light intensity, prey size) in a community, species evolve to use different parts of this gradient; competition between them is thereby reduced. Species relationships in the community may be conceived in terms of a multidimensional coordinate system, the axes of which are the various resource gradients (and other aspects of species relationships to space, time, and one another in the community). This coordinate system defines a hyperspace, and the range of the space that a given species occupies is its niche hypervolume, as an abstract characterization of its intra‐community position, or niche. Species evolve toward difference in niche, and consequently toward difference in location of their hypervolumes in the niche hyperspace. Through evolutionary time additional species can fit into the community in niche hypervolumes different from those of other species, and the niche hyperspace can become increasingly complex. Its complexity relates to the community's richness in species, its alpha diversity.
[25]
HALL A. Application of the indophenol blue method to the determination of ammonium in silicate rocks and minerals[J]. Appl Geochem, 1993, 8(1):101-105.DOI:10.1016/0883-2927(93)90059-P.
[26]
DROLC A, VRTOVŠEK J. Nitrate and nitrite nitrogen determination in waste water using on-line UV spectrometric method[J]. Bioresour Technol, 2010, 101(11):4228-4233.DOI:10.1016/j.biortech.2010.01.015.
[27]
BATES D, MAECHLER M, BOLKER B, et al. Fitting linear mixed-effects models using 1me4[J]. J Stat Soft, 2015, 67(1):1-48.DOI:10.18637/jss.v067.i01.
[28]
ANDERSON M J. A new method for non-parametric multivariate analysis of variance[J]. Austral Ecol, 2001, 26(1):32-46.DOI:10.1111/j.1442-9993.2001.01070.pp.x.
[29]
谭艳, 王邵军, 阮宏华, 等. 不同林龄杨树人工林土壤动物群落结构特征[J]. 南京林业大学学报(自然科学版), 2014, 38(3):8-12.
TAN Y, WANG S J, RUAN H H, et al. Community structure of soil fauna in different age poplar plantations[J]. J Nanjing For Univ (Nat Sci Ed), 2014, 38(3):8-12.DOI: 10.3969/j. issn.1000 -2006.2014.03.002.
[30]
张敏, 王明伟, 刘欣宇, 等. 太行山丘陵区不同林龄核桃树固碳释氧量及冠下土壤碳储量[J]. 江苏农业学报, 2021, 37(1):93-98.
ZHANG M, WANG M W, LIU X Y, et al. Carbon fixation and oxygen release amount and soil carbon storage under the canopy of walnut trees with different forest ages in hilly areas of Taihang Mountain[J]. Jiangsu J Agr Sci, 2021, 37(1):93-98.DOI:10.3969/j.issn.1000-4440.2021.01.012.
[31]
VASCONCELLOS R L F, SEGAT J C, BONFIM J A, et al. Soil macrofauna as an indicator of soil quality in an undisturbed riparian forest and recovering sites of different ages[J]. Eur J Soil Biol, 2013, 58:105-112.DOI:10.1016/j.ejsobi.2013.07.001.
[32]
杨宝玲, 张文文, 范换, 等. 苏北沿海地区不同土地利用类型下土壤动物群落结构特征[J]. 南京林业大学学报(自然科学版), 2017, 41(6):120-126.
YANG B L, ZHANG W W, FAN H, et al. Community structure of soil fauna under different land use types in the coastal area of northern Jiangsu Province[J]. J Nanjing For Univ (Nat Sci Ed), 2017, 41(6):120-126.DOI:10.3969/j.issn.1000-2006.201705034.
[33]
李媛媛, 廖家辉, 许子乾, 等. 有机肥和植被去除管理对人工林土壤节肢动物多样性的影响[J]. 生态学报, 2021, 41(7):2761-2769.
LI Y Y, LIAO J H, XU Z Q, et al. Effects of organic fertilizer application and understory plant removal on the diversity of soil arthropods in poplar plantations[J]. Acta Ecol Sin, 2021, 41(7):2761-2769.DOI:10.5846/stxb201907141485.
[34]
BERG M P, HEMERIK L. Secondary succession of terrestrial isopod,centipede,and millipede communities in grasslands under restoration[J]. Biol Fertil Soils, 2004, 40(3):163-170.DOI:10.1007/s00374-004-0765-z.
[35]
YEBOAH D, CHEN H Y H. Diversity-disturbance relationship in forest landscapes[J]. Landscape Ecol, 2016, 31(5):981-987.DOI:10.1007/s10980-015-0325-y.
[36]
WU P F, LIU X L, LIU S R, et al. Composition and spatio-temporal variation of soil microarthropods in the biodiversity hotspot of northern Hengduan Mountains,China[J]. Eur J Soil Biol, 2014, 62:30-38.DOI:10.1016/j.ejsobi.2014.02.013.
[37]
SALMON S, ARTUSO N, FRIZZERA L, et al. Relationships between soil fauna communities and humus forms:response to forest dynamics and solar radiation[J]. Soil Biol Biochem, 2008, 40(7):1707-1715.DOI:10.1016/j.soilbio.2008.02.007.
[38]
KANEDA S, KANEKO N. Influence of Collembola on nitrogen mineralization varies with soil moisture content[J]. Soil Sci Plant Nutr, 2011, 57(1):40-49.DOI:10.1080/00380768.2010.551107.
[39]
PEÑA-PEÑA K, IRMLER U. Moisture seasonality,soil fauna,litter quality and land use as drivers of decomposition in Cerrado soils in SE-Mato Grosso,Brazil[J]. Appl Soil Ecol, 2016, 107:124-133.DOI:10.1016/j.apsoil.2016.05.007.
[40]
WANG S J, TAN Y, FAN H, et al. Responses of soil microarthropods to inorganic and organic fertilizers in a poplar plantation in a coastal area of eastern China[J]. Appl Soil Ecol, 2015, 89:69-75.DOI:10.1016/j.apsoil.2015.01.004.
[41]
葛之葳, 彭塞, 许凯, 等. 短期氮添加对杨树人工林表层土壤可溶性有机碳的影响[J]. 南京林业大学学报(自然科学版), 2014, 38(6):23-27.
GE Z W, PENG S, XU K, et al. Effects of short term nitrogen addition on dissolved organic carbon in topsoil of poplar plantation[J]. J Nanjing For Univ (Nat Sci Ed), 2014, 38(6):23-27.DOI:10.3969/j.issn.1000-2006.2014.06.005.
PDF(1664 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/