CRISPR/Cas9 ribonucleoprotein-mediated precise mutation of BpGLK1 in birch without T-DNA insertion

WANG Wei, QIU Zhinan, LI Shuang, BAI Xiangdong, LIU Guifeng, JIANG Jing

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (1) : 11-17.

PDF(2243 KB)
PDF(2243 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (1) : 11-17. DOI: 10.12302/j.issn.1000-2006.202204012

CRISPR/Cas9 ribonucleoprotein-mediated precise mutation of BpGLK1 in birch without T-DNA insertion

Author information +
History +

Abstract

【Objective】 The CRISPR/Cas9 ribonucleoprotein (RNP) system is an efficient gene editing technology that is simple and accurate and has been widely used in animal and plant gene editing research. Introducing the Cas9 protein and gRNA RNP complex into recipient cells by particle bombardment to obtain marker-free gene-edited plants provides an effective approach for the rapid plant mutant creation. In this study, the BpGLK1 gene of birch (Betula platyphylla × B. pendula) was used as the target gene for editing, and CRISPR/Cas9 RNP technology was used to edit the BpGLK1 gene without T-DNA insertion. 【Method】 A target site was designed for the first exon of birch BpGLK1. The target fragment of BpGLK1-E1 was amplified by PCR. The recombinant plasmid pAbAi-BpGLK1-E1 was constructed by enzyme digestion and ligation, whereafter the plasmid was linearized and reacted with Cas9 protein to detect the CRISPR/Cas9 RNP activity and gRNA accuracy in vitro. Zygotic birch embryo-induced calluses were used as receptor for BpGLK1 directed mutagenesis via particle bombardment. 【Result】 The in vitro CRISPR/Cas9 RNP activity assay indicated that the Cas9 protein and gRNA could effectively cleave specific BpGLK1 target sites. The mature birch embryos were bombarded with gold particles coated with Cas9 protein and gRNA (RNP) at a distance of 12 cm and 7 584.5 kPa after 25 d of culture without light. After differentiation and subculturing, a glkc mutant with yellow-green leaves was obtained. Sequencing results showed that the mutant had a homozygous deletion of 18 bp in BpGLK1 gene. 【Conclusion】 A precise birch BpGLK1 mutation without T-DNA insertion was achieved using CRISPR/Cas9 editing technology.

Key words

CRISPR/Cas9 system / no T-DNA insertion / gene editing / Betula platyphylla×B. pendula

Cite this article

Download Citations
WANG Wei , QIU Zhinan , LI Shuang , et al . CRISPR/Cas9 ribonucleoprotein-mediated precise mutation of BpGLK1 in birch without T-DNA insertion[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(1): 11-17 https://doi.org/10.12302/j.issn.1000-2006.202204012

References

[1]
HILIOTI Z. Non-transgenic approach to deliver ZFNs in seeds for targeted genome engineering[J]. Methods Mol Biol, 2018, 1867:187-199.DOI: 10.1007/978-1-4939-8799-3_14.
[2]
SHANKAR S, SREEKUMAR A, PRASAD D, et al. Genome editing of oncogenes with ZFNs and TALENs:caveats in nuclease design[J]. Cancer Cell Int, 2018, 18:169.DOI: 10.1186/s12935-018-0666-0.
[3]
JACOBS T B, LAFAYETTE P R, SCHMITZ R J, et al. Targeted genome modifications in soybean with CRISPR/Cas9[J]. BMC Biotechnol, 2015, 15:16.DOI: 10.1186/s12896-015-0131-2.
[4]
LI W, TENG F, LI T D, et al. Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems[J]. Nat Biotechnol, 2013, 31(8):684-686.DOI: 10.1038/nbt.2652.
[5]
WANG P C, ZHANG J, SUN L, et al. High efficient multisites genome editing in allotetraploid cotton (Gossypium hirsutum) using CRISPR/Cas9 system[J]. Plant Biotechnol J, 2018, 16(1):137-150.DOI: 10.1111/pbi.12755.
[6]
JIANG W Z, ZHOU H B, BI H H, et al. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis,tobacco,sorghum and rice[J]. Nucleic Acids Res, 2013, 41(20):e188.DOI: 10.1093/nar/gkt780.
[7]
OSAKABE Y, LIANG Z C, REN C, et al. CRISPR-Cas9-mediated genome editing in apple and grapevine[J]. Nat Protoc, 2018, 13(12):2844-2863.DOI: 10.1038/s41596-018-0067-9.
[8]
刘苗霞, 张颜睿, 付凤玲. 标记基因在植物转基因中的安全性研究[J]. 安徽农业科学, 2011, 39(28):17186-17187,17227.
LIU M X, ZHANG Y R, FU F L. Study on the bio-safety of tag genes in transgenic plants[J]. J Anhui Agric Sci, 2011, 39(28):17186-17187,17227.DOI: 10.13989/j.cnki.0517-6611.2011.28.007.
[9]
LIANG Z, CHEN K L, ZHANG Y, et al. Genome editing of bread wheat using biolistic delivery of CRISPR/Cas9 in vitro transcripts or ribonucleo proteins[J]. Nat Protoc, 2018, 13(3):413-430.DOI: 10.1038/nprot.2017.145.
[10]
WOO J W, KIM J, KWON S I, et al. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins[J]. Nat Biotechnol, 2015, 33(11):1162-1164.DOI: 10.1038/nbt.3389.
[11]
刘星, 苏良辰, 张拜宏, 等. 异源表达花生基因AhGLK1对拟南芥glk1glk2突变体表型特征及抗旱性的影响[J]. 华南师范大学学报(自然科学版), 2020, 52(3):78-84.
LIU X, SU L C, ZHANG B H, et al. The effect of heterologous expression of peanut gene AhGLK1 on the phenotypic characteristics and drought resistance of Arabidopsis glk1 glk2 mutants[J]. J South China Norm Univ (Nat Sci Ed), 2020, 52(3):78-84.DOI: 10.6054/j.jscnun.2020047.
[12]
GANG H X, LI R H, ZHAO Y M, et al. Loss of GLK1 transcription factor function reveals new insights in chlorophyll biosynthesis and chloroplast development[J]. J Exp Bot, 2019, 70(12):3125-3138.DOI: 10.1093/jxb/erz128.
[13]
任烁淇, 刘冰洋, 李雪莹, 等. 白桦黄叶突变株叶色变化规律及苗高生长特性分析[J]. 植物研究, 2018, 38(6):852-859.
REN S Q, LIU B Y, LI X Y, et al. Analysis of leaf color variation and height growth characteristics of yellow-green leaf mutant in birch[J]. Bull Bot Res, 2018, 38(6):852-859.DOI: 10.7525/j.issn.1673-5102.2018.06.008.
[14]
张嫚嫚, 刘桂丰, 冮慧欣, 等. 白桦黄叶突变株Long non-coding RNA(LncRNA)测序及其靶基因[J]. 东北林业大学学报, 2019, 47(10):1-7.
ZHANG M M, LIU G F, GANG H X, et al. Transcriptome sequencing of long non-coding RNA (LncRNA) and its target gene analysis of Betula platyphylla yellow leaf mutant[J]. J Northeast For Univ, 2019, 47(10):1-7.DOI: 10.13759/j.cnki.dlxb.2019.10.001.
[15]
李菲, 张淑江, 章时蕃, 等. 基因枪法介导大白菜小孢子转基因技术研究初报[J]. 园艺学报, 2017, 44(1):62-68.
LI F, ZHANG S J, ZHANG S F, et al. Transformation of Chinese cabbage microspores by particle bombardment[J]. Acta Hortic Sin, 2017, 44(1):62-68.DOI: 10.16420/j.issn.0513-353x.2016-0730.
[16]
KIM S, KIM D, CHO S W, et al. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins[J]. Genome Res, 2014, 24(6):1012-1019.DOI: 10.1101/gr.171322.113.
[17]
NISHIMASU H, RAN F A, HSU P D, et al. Crystal structure of Cas9 in complex with guide RNA and target DNA[J]. Cell, 2014, 156(5):935-949.DOI: 10.1016/j.cell.2014.02.001.
[18]
SUBBURAJ S, CHUNG S J, LEE C, et al. Site-directed mutagenesis in Petunia × hybrida protoplast system using direct delivery of purified recombinant Cas9 ribonucleoproteins[J]. Plant Cell Rep, 2016, 35(7):1535-1544.DOI: 10.1007/s00299-016-1937-7.
[19]
MALNOY M, VIOLA R, JUNG M H, et al. DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins[J]. Front Plant Sci, 2016, 7:1904.DOI: 10.3389/fpls.2016.01904.
[20]
SVITASHEV S, SCHWARTZ C, LENDERTS B, et al. Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes[J]. Nat Commun, 2016, 7:13274.DOI: 10.1038/ncomms13274.
[21]
FITTER D W, MARTIN D J, COPLEY M J, et al. GLK gene pairs regulate chloroplast development in diverse plant species[J]. Plant J, 2002, 31(6):713-727.DOI: 10.1046/j.1365-313x.2002.01390.x.
[22]
唐亚萍, 杨生保, 杨涛, 等. 转化同源Golden Like转录因子提高番茄品质的研究[J]. 分子植物育种, 2017, 15(10):3969-3975.
TANG Y P, YANG S B, YANG T, et al. Study on the transformation of homologous golden like transcription factor to improve the quality of tomato[J]. Mol Plant Breed, 2017, 15(10):3969-3975.DOI: 10.13271/j.mpb.015.003969.
[23]
李艺迪, 顾宸瑞, 冮慧欣, 等. 转基因金叶银中杨叶色及生长变异分析[J]. 植物研究, 2020, 40(6):897-905.
LI Y D, GU C R, GANG H X, et al. Leaf color and growth variation of transgenic gold leaf poplar[J]. Bull Bot Res, 2020, 40(6):897-905.DOI: 10.7525/j.issn.1673-5102.2020.06.012.
[23]
李艺迪, 顾宸瑞, 冮慧欣, 等. 转基因金叶银中杨叶色及生长变异分析[J]. 植物研究, 2020, 40(6):897-905.
LI Y D, GU C R, GANG H X, et al. Leaf color and growth variation of transgenic gold leaf poplar[J]. Bull Bot Res, 2020, 40(6):897-905. DOI:10.7525/j.issn.1673-5102.2020.06.012.
PDF(2243 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/