An overview of high-throughput sequencing techniques applied on Bursaphelenchus xylophilus

DING Xiaolei, ZHANG Yue, LIN Sixi, YE Jianren

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (4) : 1-7.

PDF(1490 KB)
PDF(1490 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (4) : 1-7. DOI: 10.12302/j.issn.1000-2006.202204039

An overview of high-throughput sequencing techniques applied on Bursaphelenchus xylophilus

Author information +
History +

Abstract

As of 2022, four decades have elapsed since the pine wilt disease entered China. The disease caused by the pine wood nematode (Bursaphelenchus xylophilus) poses a major threat to all pine forests in Asia and Europe. Since the announcement of the first B. xylophilus genome assembly in 2011, high-throughput sequencing techniques have been widely used in all aspects of relevant studies. They have facilitated researchers greatly in further exploring the molecular pathogenesis of B. xylophilus from gene functions, non-coding RNA, transcriptomics and genomics. With rapid developments in sequencing techniques, we suggest researchers to use spatial transcriptomics and single cell sequencing methods for identifying long non-coding RNAs, fusion genes, circular RNAs, as well as gene methylations, RNA editings and structural variations with potential regulatory roles. As for genomics, future studies could focus on gene family expansion, genome wide association and quantitative trait locus studies to screen the gene and loci highly associated with the pathogenicity and reproductivity of B. xylophilus and reveal the adaptation mechanisms among different nematode populations during the evolution.

Key words

Bursaphelenchus xylophilus / high-throughput sequencing / transcriptomics / genomics

Cite this article

Download Citations
DING Xiaolei , ZHANG Yue , LIN Sixi , et al. An overview of high-throughput sequencing techniques applied on Bursaphelenchus xylophilus[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(4): 1-7 https://doi.org/10.12302/j.issn.1000-2006.202204039

References

[1]
万方浩, 郭建英, 王德辉. 中国外来入侵生物的危害与管理对策[J]. 生物多样性, 2002, 10(1):119-125.
WAN F H, GUO J Y, WANG D H. Alien invasive species in China: their damages and management strategies[J]. Biodivers Sci, 2002, 10(1):119-125. DOI:10.3321/j.issn:1005-0094.2002.01.015.
[2]
MAMIYA Y. Pathology of the pine wilt disease caused by Bursaphelenchus xylophilus[J]. Annu Rev Phytopathol, 1983, 21:201-220. DOI:10.1146/annurev.py.21.090183.001221.
[3]
MAMIYA Y. History of pine wilt disease in Japan[J]. J Nematol, 1988, 20(2):219-226.
[4]
INÁCIO M L, NÓBREGA F, VIEIRA P, et al. First detection of Bursaphelenchus xylophilus associated with Pinus nigra in Portugal and in Europe[J]. For Pathol, 2015, 45(3):235-238. DOI:10.1111/efp.12162.
[5]
MOTA M M, BRAASCH H, BRAVO M A, et al. First report of Bursaphelenchus xylophilus in Portugal and in Europe[J]. Nematology, 1999, 1(7):727-734. DOI:10.1163/156854199508757.
[6]
叶建仁. 松材线虫病在中国的流行现状、防治技术与对策分析[J]. 林业科学, 2019, 55(9):1-10.
YE J R. Epidemic status of pine wilt disease in China and its prevention and control techniques and counter measures[J]. Sci Silvae Sin, 2019, 55(9):1-10. DOI:10.11707/j.1001-7488.20190901.
[7]
TANAKA S E, DAYI M, MAEDA Y, et al. Stage-specific transcriptome of Bursaphelenchus xylophilus reveals temporal regulation of effector genes and roles of the dauer-like stages in the lifecycle[J]. Sci Rep, 2019, 9(1):6080. DOI:10.1038/s41598-019-42570-7.
[8]
TSAI I J, TANAKA R, KANZAKI N, et al. Transcriptional and morphological changes in the transition from mycetophagous to phytophagous phase in the plant-parasitic nematode Bursaphelenchus xylophilus[J]. Mol Plant Pathol, 2016, 17(1):77-83. DOI:10.1111/mpp.12261.
[9]
ESPADA M, SILVA A C, VAN DEN AKKER S E, et al. Identification and characterization of parasitism genes from the pinewood nematode Bursaphelenchus xylophilus reveals a multilayered detoxification strategy[J]. Mol Plant Pathol, 2016, 17(2):286-295. DOI:10.1111/mpp.12280.
[10]
WANG Z, WANG C Y, FANG Z M, et al. Advances in research of pathogenic mechanism of pine wilt disease[J]. Afr J Microbiol Res, 2010, 4(6): 437-442. DOI:10.5897/AJMR.9000023.
[11]
ZHAO B G, WANG H L, HAN S F, et al. Distribution and pathogenicity of bacteria species carried by Bursaphelenchus xylophilus in China[J]. Nematology, 2003, 5(6):899-906. DOI:10.1163/156854103773040817.
[12]
ZHANG Q, BAI G, YANG W B, et al. Pathogenic cellulase assay of pine wilt disease and immunological localization[J]. Biosci Biotechnol Biochem, 2006, 70(11):2727-2732. DOI:10.1271/bbb.60330.
[13]
UTSUZAWA S, FUKUDA K, SAKAUE D. Use of magnetic resonance microscopy for the nondestructive observation of xylem cavitation caused by pine wilt disease[J]. Phytopathology, 2005, 95(7):737-743. DOI:10.1094/phyto-95-0737.
[14]
KIKUCHI T, SHIBUYA H, AIKAWA T, et al. Cloning and characterization of pectate lyases expressed in the esophageal gland of the pine wood nematode Bursaphelenchus xylophilus[J]. Mol Plant Microbe Interact, 2006, 19(3):280-287. DOI:10.1094/MPMI-19-0280.
[15]
KANG J S, LEE H, MOON I S, et al. Construction and characterization of subtractive stage-specific expressed sequence tag (EST) libraries of the pinewood nematode Bursaphelenchus xylophilus[J]. Genomics, 2009, 94(1):70-77. DOI:10.1016/j.ygeno.2009.03.001.
[16]
ESPADA M, DEN AKKER S E V, MAIER T, et al. STATAWAARS:a promoter motif associated with spatial expression in the major effector-producing tissues of the plant-parasitic nematode Bursaphelenchus xylophilus[J]. BMC Genomics, 2018, 19(1):553. DOI:10.1186/s12864-018-4908-2.
[17]
HIRAO T, FUKATSU E, WATANABE A. Characterization of resistance to pine wood nematode infection in Pinus thunbergii using suppression subtractive hybridization[J]. BMC Plant Biol, 2012, 12:13. DOI:10.1186/1471-2229-12-13.
[18]
KIKUCHI T, COTTON J A, DALZELL J J, et al. Genomic insights into the origin of parasitism in the emerging plant pathogen Bursaphelenchus xylophilus[J]. PLoS Pathog, 2011, 7(9):e1002219. DOI:10.1371/journal.ppat.1002219.
[19]
FIGUEIREDO J, SIMÕES M J, GOMES P, et al. Assessment of the geographic origins of pinewood nematode isolates via single nucleotide polymorphism in effector genes[J]. PLoS One, 2013, 8(12):e83542. DOI:10.1371/journal.pone.0083542.
[20]
PALOMARES-RIUS J E, TSAI I J, KARIM N, et al. Genome-wide variation in the pinewood nematode Bursaphelenchus xylophilus and its relationship with pathogenic traits[J]. BMC Genomics, 2015, 16:845. DOI:10.1186/s12864-015-2085-0.
[21]
LI Y X, MENG F L, DENG X, et al. Comparative transcriptome analysis of the pinewood nematode Bursaphelenchus xylophilus reveals the molecular mechanism underlying its defense response to host-derived α-pinene[J]. Int J Mol Sci, 2019, 20(4):911. DOI:10.3390/ijms20040911.
[22]
DING X L, YE J R, WU X Q, et al. Deep sequencing analyses of pine wood nematode Bursaphelenchus xylophilus microRNAs reveal distinct miRNA expression patterns during the pathological process of pine wilt disease[J]. Gene, 2015, 555(2):346-356. DOI:10.1016/j.gene.2014.11.030.
[23]
KIKUCHI T, JONES J T, AIKAWA T, et al. A family of glycosyl hydrolase family 45 cellulases from the pine wood nematode Bursaphelenchus xylophilus[J]. FEBS Lett, 2004, 572(1/2/3):201-205. DOI:10.1016/j.febslet.2004.07.039.
[24]
PALOMARES-RIUS J E, HIROOKA Y, TSAI I J, et al. Distribution and evolution of glycoside hydrolase family 45 cellulases in Nematodes and fungi[J]. BMC Evol Biol, 2014, 14:69. DOI:10.1186/1471-2148-14-69.
[25]
RUAN J, LI H. Fast and accurate long-read assembly with wtdbg2[J]. Nat Methods, 2020, 17(2):155-158. DOI:10.1038/s41592-019-0669-3.
[26]
SHI L L, GUO Y F, DONG C L, et al. Long-read sequencing and de novo assembly of a Chinese genome[J]. Nat Commun, 2016, 7:12065. DOI:10.1038/ncomms12065.
[27]
GORDON D, HUDDLESTON J, CHAISSON M J P, et al. Long-read sequence assembly of the Gorilla genome[J]. Science, 2016, 352(6281):aae0344. DOI:10.1126/science.aae0344.
[28]
DING X L, GUO Y F, YE J R, et al. Population differentiation and epidemic tracking of Bursaphelenchus xylophilus in China based on chromosome-level assembly and whole-genome sequencing data[J]. Pest Manag Sci, 2022, 78(3):1213-1226. DOI:10.1002/ps.6738.
[29]
DAYI M, SUN S M, MAEDA Y, et al. Nearly complete genome assembly of the pinewood nematode Bursaphelenchus xylophilus strain Ka4C1[J]. Microbiol Resour Announc, 2020, 9(42):e01002-e01020. DOI:10.1128/MRA.01002-20.
[30]
QIU X W, WU X Q, HUANG L, et al. Specifically expressed genes of the nematode Bursaphelenchus xylophilus involved with early interactions with pine trees[J]. PLoS One, 2013, 8(10):e78063. DOI:10.1371/journal.pone.0078063.
[31]
LI Z, LIU X X, CHU Y N, et al. Cloning and characterization of a 2-cys peroxiredoxin in the pine wood nematode,Bursaphelenchus xylophilus,a putative genetic factor facilitating the infestation[J]. Int J Biol Sci, 2011, 7(6):823-836. DOI:10.7150/ijbs.7.823.
[32]
WANG X R, CHENG X, LI Y D, et al. Cloning arginine kinase gene and its RNAi in Bursaphelenchus xylophilus causing pine wilt disease[J]. Eur J Plant Pathol, 2012, 134(3):521-532. DOI:10.1007/s10658-012-0035-0.
[33]
XU X L, WU X Q, YE J R, et al. Molecular characterization and functional analysis of three pathogenesis-related cytochrome P450 genes from Bursaphelenchus xylophilus (Tylenchida:Aphelenchoidoidea)[J]. Int J Mol Sci, 2015, 16(3):5216-5234. DOI:10.3390/ijms16035216.
[34]
LIU H B, RUI L, FENG Y Q, et al. Autophagy contributes to resistance to the oxidative stress induced by pine reactive oxygen species metabolism,promoting infection by Bursaphelenchus xylophilus[J]. Pest Manag Sci, 2020, 76(8):2755-2767. DOI:10.1002/ps.5823.
[35]
YAN X, CHENG X Y, WANG Y S, et al. Comparative transcriptomics of two pathogenic pinewood Nematodes yields insights into parasitic adaptation to life on pine hosts[J]. Gene, 2012, 505(1):81-90. DOI:10.1016/j.gene.2012.05.041.
[36]
DING X L, YE J R, LIN S X, et al. Deciphering the molecular variations of pine wood nematode Bursaphelenchus xylophilus with different virulence[J]. PLoS One, 2016, 11(5):e0156040. DOI:10.1371/journal.pone.0156040.
[37]
HU L J, WU X Q, LI H Y, et al. An effector,BxSapB1,induces cell death and contributes to virulence in the pine wood nematode Bursaphelenchus xylophilus[J]. Mol Plant Microbe Interactions, 2019, 32(4):452-463. DOI:10.1094/mpmi-10-18-0275-r.
[38]
ZHAO Q, HU L J, WU X Q, et al. A key effector,BxSapB2,plays a role in the pathogenicity of the pine wood nematode Bursaphelenchus xylophilus[J]. For Pathol, 2020, 50(3):e12600. DOI:10.1111/efp.12600.
[39]
WANG B W, HAO X, XU J Y, et al. Transcriptome-based analysis reveals a crucial role of BxGPCR17454 in low temperature response of pine wood nematode (Bursaphelenchus xylophilus)[J]. Int J Mol Sci, 2019, 20(12):2898. DOI:10.3390/ijms20122898.
[40]
CHEN Q L, ZHANG R Z, LI D L, et al. Trehalose in pine wood nematode participates in DJ3 formation and confers resistance to low-temperature stress[J]. BMC Genomics, 2021, 22(1):524. DOI:10.1186/s12864-021-07839-0.
[41]
LU F, GUO K, CHEN A L, et al. Transcriptomic profiling of effects of emamectin benzoate on the pine wood nematode Bursaphelenchus xylophilus[J]. Pest Manag Sci, 2020, 76(2):747-757. DOI:10.1002/ps.5575.
[42]
XUE Q, WU X Q, WU F, et al. Transcriptome analysis of Bursaphelenchus xylophilus uncovers the impact of Stenotrophomonas maltophilia on nematode and pine wilt disease[J]. Forests, 2020, 11(9):908. DOI:10.3390/f11090908.
[43]
刘振凯, 崔晶, 理永霞, 等. αβ-蒎烯胁迫下松材线虫转录组特征[J]. 东北林业大学学报, 2020, 48(5):93-98.
LIU Z K, CUI J, LI Y X, et al. Transcriptome characteristics of pine wood nematode in response to α-and β-pinene stress[J]. J Northeast For Univ, 2020, 48(5):93-98. DOI:10.3969/j.issn.1000-5382.2020.05.018.
[44]
陈阳雪, 赵晓佳, 谈家金. 松树内生细菌GD2对松材线虫入侵寄主时转录组的影响[J]. 华中农业大学学报, 2021, 40(5):37-45.
CHEN Y X, ZHAO X J, TAN J J. Effect of Bacillus cereus GD2 on transcriptome of pine wood nematode invading host[J]. J Huazhong Agric Univ, 2021, 40(5):37-45. DOI:10.13300/j.cnki.hnlkxb.2021.05.006.
[45]
HUANG Q X, CHENG X Y, MAO Z C, et al. MicroRNA discovery and analysis of pinewood nematode Bursaphelenchus xylophilus by deep sequencing[J]. PLoS One, 2010, 5(10):e13271. DOI:10.1371/journal.pone.0013271.
[46]
MODESTO I, INÁCIO V, VAN DE PEER Y, et al. MicroRNA-mediated post-transcriptional regulation of Pinus pinaster response and resistance to pinewood nematode[J]. Sci Rep, 2022, 12(1):5160. DOI:10.1038/s41598-022-09163-3.
[47]
XIE W F, HUANG A Z, LI H M, et al. Identification and comparative analysis of microRNAs in Pinus massoniana infected by Bursaphelenchus xylophilus[J]. Plant Growth Regul, 2017, 83(2):223-232. DOI:10.1007/s10725-016-0221-8.
[48]
CAI P F, GOBERT G N, MCMANUS D P. MicroRNAs in parasitic helminthiases:current status and future perspectives[J]. Trends Parasitol, 2016, 32(1):71-86. DOI:10.1016/j.pt.2015.09.003.
[49]
CHENG X Y, TIAN X L, WANG Y S, et al. Metagenomic analysis of the pinewood nematode microbiome reveals a symbiotic relationship critical for xenobiotics degradation[J]. Sci Rep, 2013, 3:1869. DOI:10.1038/srep01869.
[50]
XIANG Y, WU X Q, ZHOU A D. Bacterial diversity and community structure in the pine wood nematode Bursaphelenchus xylophilus and B.mucronatus with different virulence by high-throughput sequencing of the 16S rDNA[J]. PLoS One, 2015, 10(9):e0137386. DOI:10.1371/journal.pone.0137386.
[51]
WU X Q, XUE Q, XIANG Y, et al. Community and functional diversity of bacteria associated with propagative and dispersal forms of Bursaphelenchus xylophilus[J]. Nematology, 2016, 18(10):1185-1198. DOI:10.1163/15685411-00003024.
[52]
芦伟, 谈家金. 松材线虫侵染对马尾松茎干内生细菌群落结构的影响[J]. 东北林业大学学报, 2022, 50(1):105-110,122.
LU W, TAN J J. Effects of pine wood nematode infection on the endophytic bacterial community structure in the stems of Pinus massoniana[J]. J Northeast For Univ, 2022, 50(1):105-110,122. DOI:10.13759/j.cnki.dlxb.2022.01.005.
[53]
尹诗恒, 张绍勇, 刘骕骦, 等. 松材线虫侵染对马尾松苗不同部位内生细菌菌群结构的影响[J]. 浙江农林大学学报, 2021, 38(4):846-853.
YIN S H, ZHANG S Y, LIU S S, et al. Effect of Bursaphelenchus xylophilus infection on the endophytic bacterial community structure in different parts of Pinus massoniana seedlings[J]. J Zhejiang A&F Univ, 2021, 38(4):846-853. DOI:10.11833/j.issn.2095-0756.20200562.
[54]
DENG J, YU D, ZHOU W, et al. Variations of phyllosphere and rhizosphere microbial communities of Pinus koraiensis infected by Bursaphelenchus xylophilus[J]. Microb Ecol, 2021:2021Sep6. DOI:10.1007/s00248-021-01850-4.
[55]
ZHANG W, YU H Y, LYU Y X, et al. Gene family expansion of pinewood nematode to detoxify its host defence chemicals[J]. Mol Ecol, 2020, 29(5):940-955. DOI:10.1111/mec.15378.
[56]
FILIPIAK A, MALEWSKI T, MATCZYNSKA E, et al. Molecular variation among virulent and avirulent strains of the quarantine nematode Bursaphelenchus xylophilus[J]. Mol Genet Genomics, 2021, 296(2):259-269. DOI:10.1007/s00438-020-01739-w.
[57]
黄金思, 奚晓桐, 丁晓磊, 等. 基于SNP标记的广东省松材线虫种群分化研究[J]. 南京林业大学学报(自然科学版), 2019, 43(6):25-31.
HUANG J S, XI X T, DING X L, et al. Study on the population differentiation of Bursaphelenchus xylophilus in Guangdong Province by SNP markers[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(6):25-31. DOI:10.3969/j.issn.1000-2006.201903007.
[58]
POP M, SALZBERG S L. Bioinformatics challenges of new sequencing technology[J]. Trends Genet, 2008, 24(3):142-149. DOI:10.1016/j.tig.2007.12.006.
[59]
李亦学, 李轩. 新一代测序技术的发展和应用[J]. 中国科技投资, 2012(7):21-22.
LI Y X, LI X. Development and application of next-generation sequencing technology[J]. Venture Cap, 2012(7):21-22. DOI:10.3969/j.issn.1673-5811.2012.07.005.
[60]
乌日拉嘎, 徐海燕, 冯淑贞, 等. 测序技术的研究进展及三代测序的应用[J]. 中国乳品工业, 2016, 44(4):33-37.
WURILAGA, XU H Y, FENG S Z, et al. Research progress of sequencing technologies and the application of third generation sequencing[J]. China Dairy Ind, 2016, 44(4):33-37. DOI:10.3969/j.issn.1001-2230.2016.04.009.
[61]
GIACOMELLO S. A new era for plant science:spatial single-cell transcriptomics[J]. Curr Opin Plant Biol, 2021, 60:102041. DOI:10.1016/j.pbi.2021.102041.
[62]
SHAPIRO E, BIEZUNER T, LINNARSSON S. Single-cell sequencing-based technologies will revolutionize whole-organism science[J]. Nat Rev Genet, 2013, 14(9):618-630. DOI:10.1038/nrg3542.
PDF(1490 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/