Health assessment of Larix gmelinii var. principis-rupprechtii and Pinus sylvestris var. mongolica plantations in Saihanba Nature Reserve

ZHAO Jinman, HAN Xinyue, CHENG Ruiming, ZHANG Zhidong

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (3) : 199-206.

PDF(1695 KB)
PDF(1695 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (3) : 199-206. DOI: 10.12302/j.issn.1000-2006.202204058

Health assessment of Larix gmelinii var. principis-rupprechtii and Pinus sylvestris var. mongolica plantations in Saihanba Nature Reserve

Author information +
History +

Abstract

【Objective】 The study aimed to understand the health status of plantations in nature reserves for forest management and the construction of nature reserves. 【Method】 A total of 36 sample plots were surveyed in the pure Larix gmelinii var. principis-rupprechtii and Pinus sylvestris var. mongolica plantations in the Saihanba Nature Reserve of Hebei Province using the stratified random sampling method. A total of 17 indicators, including the five aspects of productivity, stand structure, species diversity, soil quality, and stability, were selected to establish an indicator system for assessing forest health. The forest health index was calculated by principal component analysis, and the forest health grades were classified using the K-means clustering method. The accuracy of the clustering results was verified by Fisher’s discriminant analysis. 【Result】 The forest health index of the study area ranged between -1.02 and 1.46. The soil quality and stand structure were the most important indicators that influenced forest health in the study area. The proportionate areas were in the following order: mid-health (50%) > unhealthy (25%) > sub-health (19%) > healthy (6%). The health status of L. gmelinii var. principis-rupprechtii forests was better than that of P. sylvestris var. mongolica forests for middle-aged (20-30 a) and near-mature (> 30 a) stands. The forest health indices of L. gmelinii var. principis-rupprechtii and P. sylvestris var. mongolica forests tended to decrease with increasing stand density. 【Conclusion】 The plantations in the Saihanba Nature Reserve were primarily in the mid-health and non-health states. Therefore, the findings revealed that effective management strategies are urgently necessary for improving forest health in the study area.

Key words

forest health / plantation / principal component analysis / Larix gmelinii var. prinoipis-rupprechtii / Prinus sylvestris var. mongolica / Saihanba Nature Reserve

Cite this article

Download Citations
ZHAO Jinman , HAN Xinyue , CHENG Ruiming , et al. Health assessment of Larix gmelinii var. principis-rupprechtii and Pinus sylvestris var. mongolica plantations in Saihanba Nature Reserve[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(3): 199-206 https://doi.org/10.12302/j.issn.1000-2006.202204058

References

[1]
刘建泉, 孙建忠. 东大河林区青海云杉林健康评价[J]. 草业科学, 2012, 29(4):624-628.
LIU J Q, SUN J Z. Health assessment of Picea classifolia forest in the Dongdahe forest region[J]. Pratacultural Sci, 2012, 29(4):624-628.
[2]
LU S S, LI J P, GUAN X L, et al. The evaluation of forestry ecological security in China: developing a decision support system[J]. Ecol Indic, 2018, 91: 664-678. DOI: 10.1016/j.ecolind.2018.03.088.
[3]
刘世荣, 杨予静, 王晖. 中国人工林经营发展战略与对策:从追求木材产量的单一目标经营转向提升生态系统服务质量和效益的多目标经营[J]. 生态学报, 2018, 38(1): 1-10.
LIU S R, YANG Y J, WANG H. Development strategy and management countermeasures of planted forests in China: transforming from timber-centered single objective management towards multi-purpose management for enhancing quality and benefits of ecosystem services[J]. Acta Ecol Sin, 2018, 38(1): 1-10. DOI: 10.5846/stxb201712072201.
[4]
TRUMBORE S, BRANDO P, HARTMANN H. Forest health and global change[J]. Science, 2015, 349(6250): 814-818.DOI:10.1126/science.aac6759.
[5]
郑学良, 陈丽华, 李洪洋, 等. 基于水源涵养功能的辽东防护林体系健康评价[J]. 中国水土保持科学, 2020, 18(2): 102-110.
ZHENG X L, CHEN L H, LI H Y, et al. Health assessment of Liaodong shelterbelt system based on water conservation[J]. Sci of Soil Water Conserv, 2020, 18(2): 102-110. DOI: 10.16843/j.sswc.2020.02.013.
[6]
XIAO F J, OUYANG H, ZHANG Q, et al. Forest ecosystem health assessment and analysis in China[J]. J Geogr Sci, 2004, 14(1): 18-24. DOI: 10.1007/BF02873086.
[7]
MENG Y, CAO B H, DONG C, et al. Mount Taishan forest ecosystem health assessment based on forest inventory data[J]. Forests, 2019, 10(8): 657. DOI: 10.3390/f10080657.
[8]
董灵波, 刘兆刚. 森林健康评价及其多尺度转换方法[J]. 南京林业大学学报(自然科学版), 2021, 45(3): 206-216.
DONG L B, LIU Z G. Forest health assessments and multi-scale conversion methods[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(3): 206-216. DOI: 10.12302/j.issn.1000-2006.201911007.
[9]
闫晋升, 王永东, 娄泊远, 等. 哈萨克斯坦首都努尔苏丹人工林健康评价[J]. 干旱区研究, 2021, 38(5): 1474-1483.
YAN J S, WANG Y D, LOU B Y, et al. Health assessment of plantations in Nursultan, capital of Kazakhstan[J]. Arid Zone Res, 2021, 38(5): 1474-1483. DOI: 10.13866/j.azr.2021.05.30.
[10]
LU S S, ZHOU Y, SUN H S, et al. Examining the influencing factors of forest health, its implications on rural revitalization: a case study of five forest farms in Beijing[J]. Land Use Policy, 2021, 102: 105265. DOI: 10.1016/j.landusepol.2020.105265.
[11]
赵勇钧, 谢阳生, 王建军, 等. 基于多元统计分析的马尾松人工林健康评价研究:以广西热带林业实验中心为例[J]. 中南林业科技大学学报, 2019, 39(7): 100-107.
ZHAO Y J, XIE Y S, WANG J J, et al. Health assessment of Pinus massoniana plantation on multivariate statistical analysis: a case study of Guangxi Tropical Forestry Experimental Center[J]. J Cent South Univ For Technol, 2019, 39(7): 100-107. DOI: 10.14067/j.cnki.1673-923x.2019.07.014.
[12]
谷鑫鑫, 司剑华. 基于层次分析法的西宁市油松人工林健康评价[J]. 青海大学学报, 2020, 38(3): 34-43.
GU X X, SI J H. Health evaluation of Pinus tabuliformis Carr. plantation in Xining City based on analytic hierarchy process[J]. J Qinghai Univ, 2020, 38(3): 34-43. DOI: 10.13901/j.cnki.qhwxxbzk.2020.03.005.
[13]
王玮玮, 许彦红, 杨俊灵, 等. 纳板河流域国家级自然保护区主要森林植被类型健康评价研究[J]. 中国农学通报, 2021, 37(26): 32-39.
WANG W W, XU Y H, YANG J L, et al. Health evaluation of main forest vegetation types in Naban River Nature Reserve[J]. Chin Agric Sci Bull, 2021, 37(26): 32-39.DOI: 10.11924/j.issn.1000-6850.casb2020-0755.
[14]
贾大鹏, 王新杰, 刘雨. 金沟岭林场森林健康评价[J]. 东北林业大学学报, 2019, 47(8): 47-52,57.
JIA D P, WANG X J, LIU Y. Forest health assessment of Jingouling Forest Farm[J]. J Northeast For Univ, 2019, 47(8): 47-52,57. DOI: 10.13759/j.cnki.dlxb.2019.08.009.
[15]
TAO N, LIU D, WU J. Assessment of forest ecosystem health based on fuzzy evaluation method: a case study of forest ecosystem in Liangshui Natural Reserve[J]. Rev Int Contam Ambie, 2019, 35(esp01): 159-164. DOI: 10.20937/rica.2019.35.esp01.15.
[16]
ZHANG F, ZHANG J Q, WU R N, et al. Ecosystem health assessment based on DPSIRM framework and health distance model in Nansi Lake, China[J]. Stoch Environ Res Risk Assess, 2016, 30(4):1235-1247. DOI: 10.1007/s00477-015-1109-2.
[17]
王秋燕, 陈鹏飞, 李学东, 等. 森林健康评价方法综述[J]. 南京林业大学学报(自然科学版), 2018, 42(2): 177-183.
WANG Q Y, CHEN P F, LI X D, et al. Review of forest health assessment methods[J]. J Nanjing For Univ (Nat Sci Ed), 2018, 42(2): 177-183. DOI: 10.3969/j.issn.1000-2006.201703105.
[18]
ZHU J J, TAN H, KANG H Z, et al. Comparison of foliar nutrient concentrations between natural and artificial forests of Pinus sylvestris var. mongolica on sandy land, China[J]. J For Res, 2006, 17(3): 177-184. DOI: 10.1007/s11676-006-0042-0.
[19]
扈梦梅, 田龙, 吴亚楠, 等. 塞罕坝华北落叶松人工林间伐和混交改造对大型土壤动物群落结构的影响[J]. 林业科学, 2019, 55(11): 153-162.
HU M M, TIAN L, WU Y N, et al. Influences of thinning and mixed transformation of Larix principis-rupprechtii plantations on the community structure of soil macro faunal in Saihanba area[J]. Sci Silvae Sin, 2019, 55(11): 153-162. DOI: 10.11707/j.1001-7488.20191117.
[20]
牛小云, 孙晓梅, 陈东升, 等. 辽东山区不同林龄日本落叶松人工林土壤微生物、养分及酶活性[J]. 应用生态学报, 2015, 26(9):2663-2672.
NIU X Y, SUN X M, CHEN D S, et al. Soil microorganisms, nutrients and enzyme activity of Larix kaempferi plantation under different ages in mountainous region of eastern Liaoning Province, China[J]. Chin J Appl Ecol, 2015, 26(9):2663-2672. DOI: 10.13287/j.1001-9332.20150630.014.
[21]
鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
LU R K. Methods of soil agrochemical analysis[M]. Beijing: China Agriculture Scientech Press, 2000.
[22]
潘湘海. 塞罕坝樟子松人工林二元立木材积表的研制[J]. 河北林业科技, 2010(6): 20.
PAN X H. Compilation of binary standing volume tables of Pinus sylvestris forest in Saihanba area[J]. J Hebei For Sci Technol, 2010(6): 20. DOI:10.16449/j.cnki.issn1002-3356.2010.06.023.
[23]
张菲, 张岩. 塞罕坝地区华北落叶松人工林二元立木材积表编制研究[J]. 河北林果研究, 2016, 31(2): 128-131.
ZHANG F, ZHANG Y. Compilation of binary standing volume tables of Larix principis-rupprechtii forest in Saihanba area[J]. Hebei J For Orc Res, 2016, 31(2): 128-131.DOI:10.13320/j.cnki.hjfor.2016.0025.
[24]
杜秀芳, 汤孟平, 潘建勇, 等. 临安区不同森林类型竞争指数比较研究[J]. 生态学报, 2020, 40(12): 4064-4072.
DU X F, TANG M P, PAN J Y, et al. Study on competition index of different typical forest types on Lin’an Region[J]. Acta Ecol Sin, 2020, 40(12): 4064-4072. DOI: 10.5846/stxb201901240181.
[25]
潘磊磊, SEMYUNG K, 刘艳书, 等. 沙地樟子松天然林南缘分布区林木竞争、空间格局及其更新特征[J]. 生态学报, 2019, 39(10): 3687-3699.
PAN L L, SEMYUNG K, LIU Y S, et al. Tree competition, spatial pattern, and regeneration of a Mongolian pine natural forest in the southern geographical edge[J]. Acta Ecol Sin, 2019, 39(10): 3687-3699. DOI: 10.5846/stxb201804270955.
[26]
喻泓, 杨晓晖. 地表火干扰时间序列上樟子松林竞争强度的变化[J]. 生态学报, 2010, 30(1): 79-85.
YU H, YANG X H. Variation of competition intensity across a chronosequence in surface firemediated Mongolian pine forest[J]. Acta Ecol Sin, 2010, 30(1): 79-85.
[27]
胡艳波, 惠刚盈. 优化林分空间结构的森林经营方法探讨[J]. 林业科学研究, 2006, 19(1): 1-8.
HU Y B, HUI G Y. A discussion on forest management method optimizing forest spatial structure[J]. For Res, 2006, 19(1): 1-8. DOI: 10.3321/j.issn:1001-1498.2006.01.001.
[28]
姜雨, 黄选瑞, 时田雨, 等. 不同间伐强度对自然保护区人工林植被多样性及分布格局的影响:以河北省塞罕坝机械林场为例[J]. 中南林业科技大学学报(自然科学版), 2022, 42(12):68-81.
JIANG Y, HUANG X Y, SHI T Y, et al. Effects of tending thinning on the vegetation diversity and distribution pattern of artificial forests in nature reserves: a case study of Saihanba Mechanical Forest Farm in Hebei Province[J]. J Cent South Univ For Technol, 2022, 42(12):68-81.DOI:10.14067/j.cnki.1673-923x.2022.12.008.
[29]
徐梅, 关庆伟. 徐州侧柏人工林健康评价研究[J]. 西南林业大学学报, 2014, 34(2):39-43,54.
XU M, GUAN Q W. Health assessment of Platycladus orientalis plantation in Xuzhou[J]. J Southwest For Univ, 2014, 34(2):39-43,54. DOI:10.3969/j.issn.2095-1914.2014.02.008.
[30]
曹小玉, 委霞, 赵文菲, 等. 基于结构方程模型的森林健康评价[J]. 生态学杂志, 2021, 40(8): 2635-2647.
CAO X Y, WEI X, ZHAO W F, et al. Evaluation of forest health based on structural equation model[J]. Chin J of Ecol, 2021, 40(8): 2635-2647. DOI: 10.13292/j.1000-4890.202108.018.
[31]
DU C, XU C Y, JIAN J S, et al. Seasonal dynamics of bacterial communities in a Betula albosinensis forest[J]. Eur J Soil Sci, 2018, 69(4):666-674.DOI: 10.1111/ejss.12568.
[32]
LIU T, WU X H, LI H W, et al. Soil organic matter, nitrogen and pH driven change in bacterial community following forest conversion[J]. For Ecol Manag, 2020, 477: 118473. DOI: 10.1016/j.foreco.2020.118473.
[33]
QU Z L, LIU B, MA Y, et al. Differences in bacterial community structure and potential functions among Eucalyptus plantations with different ages and species of trees[J]. Appl Soil Ecol, 2020, 149:103515.DOI: 10.1016/j.apsoil.2020.103515.
[34]
刘慧敏, 韩海荣, 程小琴, 等. 不同密度调控强度对华北落叶松人工林土壤质量的影响[J]. 北京林业大学学报, 2021, 43(6): 50-59.
LIU H M, HAN H R, CHENG X Q, et al. Effects of different density regulation intensities on soil quality in Larix principis-rupprechtii plantation[J]. J Beijing For Univ, 2021, 43(6): 50-59. DOI: 10.12171/j.1000-1522.20200322.
[35]
BOLAT İ. The effect of thinning on microbial biomass C, N and basal respiration in black pine forest soils in Mudurnu, Turkey[J]. Eur J For Res, 2014, 133(1): 131-139. DOI: 10.1007/s10342-013-0752-8.
[36]
刘怡青, 田育红, 宋含章, 等. 胸径和林分密度决定内蒙古东部落叶松林种内竞争[J]. 生态学杂志, 2018, 37(3):847-853.
LIU Y Q, TIAN Y H, SONG H Z, et al. DBH and stand density regulate intraspecific competition of Larix gmelinii in eastern Inner Mongolia[J]. Chin J Ecol, 2018, 37(3): 847-853.DOI:10.13292/j.1000-4890.201803.016.
[37]
董雪婷, 张静, 张志东, 等. 树种相互作用、林分密度和树木大小对华北落叶松生产力的影响[J]. 应用生态学报, 2021, 32(8):2722-2728.
DONG X T, ZHANG J, ZHANG Z D, et al. Effects of tree species interaction,stand density,and tree size on the productivity of Larix principis-rupprechtii[J]. Chin J Appl Ecol, 2021, 32(8): 2722-2728.DOI: 10.13287/j.1001-9332.202108.006.
[38]
PRETZSCH H, SCHÜTZE G. Tree species mixing can increase stand productivity,density and growth efficiency and attenuate the trade-off between density and growth throughout the whole rotation[J]. Ann Bot, 2021, 128(6):767-786.DOI: 10.1093/aob/mcab077.
[39]
王杰, 陆景星, 王相震, 等. 华北落叶松人工林间伐后9-10年林下天然更新研究[J]. 北京林业大学学报, 2021, 43(12):17-28.
WANG J, LU J X, WANG X Z, et al. Natural regeneration of Larix principis-rupprechtii plantations in nine to ten years after thinning[J]. J Beijing For Univ, 2021, 43(12):17-28. DOI:10.12171/j.1000-1522.20200371.
[40]
徐雪蕾, 孙玉军, 周华, 等. 间伐强度对杉木人工林林下植被和土壤性质的影响[J]. 林业科学, 2019, 55(3):1-12.
XU X L, SUN Y J, ZHOU H, et al. Effects of thinning intensity on understory growth and soil properties in Chinese fir plantation[J]. Sci Silvae Sin, 2019, 55(3):1-12.DOI: 10.11707/j.1001-7488.20190301.
[41]
朱柱, 杨海龙, 黄乾, 等. 青海高寒黄土区典型水源涵养林健康评价[J]. 浙江农林大学学报, 2019, 36(6):1166-1173.
ZHU Z, YANG H L, HUANG Q, et al. Health evaluation of typical water conservation forests in the alpine loess area of Qinghai[J]. J Zhejiang A F Univ, 2019, 36(6):1166-1173. DOI: 10.11833/j.issn.2095-0756.2019.06.014.
[42]
安佳怡, 冯仲科, 马天天, 等. 基于GIS格网的重庆合川区森林火险等级区划[J]. 中南林业科技大学学报, 2022, 42(9):91-101.
AN J Y, FENG Z K, MA T T, et al. Zoning of forest fire risk levels in Hechuan District of Chongqing based on GIS grid[J]. J Cent South Univ For Technol, 2022, 42(9):91-101. DOI: 10.14067/j.cnki.1673-923x.2022.09.011.
[43]
常旭, 邱新彩, 刘欣, 等. 塞罕坝华北落叶松纯林和混交林土壤肥力质量评价[J]. 北京林业大学学报, 2021, 43(8): 50-59.
CHANG X, QIU X C, LIU X, et al. Soil fertility quality evaluation of pure and mixed Larix principis-rupprechtii forests in Saihanba, Hebei Province of northern China[J]. J Beijing For Univ, 2021, 43(8): 50-59. DOI: 10.12171/j.1000-1522.20210189.
PDF(1695 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/