Expressional profiling of circRNAs under PEG and NaCl stresses in germinated moso bamboo seeds

WANG Xiaojing, WANG Tao, YANG Kai, LI Lubin

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (6) : 17-24.

PDF(10701 KB)
PDF(10701 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (6) : 17-24. DOI: 10.12302/j.issn.1000-2006.202204063

Expressional profiling of circRNAs under PEG and NaCl stresses in germinated moso bamboo seeds

Author information +
History +

Abstract

【Objective】 Circular RNAs (circRNAs) are a class of endogenous non-coding RNA produced by reverse alternative splicing of transcripts, which play crucial roles in plant growth and development. This study aimed to identify circRNAs in germinated seeds of moso bamboo (Phyllostachys edulis), and investigate their expression under drought and salt stress conditions, providing a foundation for exploring the molecular regulation mechanism of bamboo seed germination under abiotic stress resistance. 【Method】 polyethylene glycol (PEG) 6000 and NaCl were used to simulate drought and salt stress, respectively. The strand specific libraries were constructed for moso bamboo seeds samples at the seed coat rupture stage under treatments of H2O, 10% (mass fraction) PEG, 15% PEG, 50 and 100 mol/L NaCl. High throughout sequencing and biological information analysis were used to identify and analysis the expressional pattern of circRNAs. 【Result】 A total of 1 446 circRNAs were identified in all samples, with 76.34% of circRNAs originating from exon region; The circRNAs with the highest expression levels in bamboo germinating seeds under different treatments were identified as plant_ circ_ 0001703, plant_ circ_ 0001728, plant_ circ_ 0000358, plant_ circ_ 0001236 and plant_ circ_ 0001728;Compared with control, 524, 505, 467 and 474 circRNAs were significantly differentially expressed in germinating seeds under the four stress treatments. The original genes of differentially expressed circRNAs were significantly enriched in various GO and KEGG pathways. 【Conclusion】 A total of 1 446 circRNAs were found to be expressed in moso bamboo germinating seeds, with 1 056 circRNAs responding to drought or salinity stresses during seed germination. Genes involved in acylhydrolase enzyme activity and sphingolipid metabolism pathways may play a crucial role in regulating bamboo seed germination under PEG or NaCl stress conditions.

Key words

moso bamboo / germination / polyethylese glycol (PEG) / NaCl / circRNAs

Cite this article

Download Citations
WANG Xiaojing , WANG Tao , YANG Kai , et al. Expressional profiling of circRNAs under PEG and NaCl stresses in germinated moso bamboo seeds[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2023, 47(6): 17-24 https://doi.org/10.12302/j.issn.1000-2006.202204063

References

[1]
江泽慧. 世界竹藤[M]. 沈阳: 辽宁科学技术出版社, 2002.
[2]
汪奎宏, 黄伯惠. 中国毛竹[M]. 杭州: 浙江科学技术出版社, 1996.
WANG K H, HUANG B H. Phyllostachys pubescens in China[M]. Hangzhou: Zhejiang Science & Technology Press, 1996.
[3]
姚文静, 王茹, 王星, 等. 毛竹实生苗生长发育规律及其模型拟合研究[J]. 西部林业科学, 2020, 49(3):14-20,28.
YAO W J, WANG R, WANG X, et al. The growth law and its fitting model of Phyllostachys edulis seedlings[J]. J West China For Sci, 2020, 49(3):14-20,28.DOI: 10.16473/j.cnki.xblykx1972.2020.03.003.
[4]
张金菊, 张国敏, 贾碧玉, 等. 毛竹种子育苗技术初探[J]. 现代园艺, 2015(12):26.
ZHANG J J, ZHANG G M, JIA B Y, et al. Preliminary study on seedling raising techniques of Phyllostachys pubescens seeds[J]. Xiandai Horticnlt, 2015(12): 26.DOI: 10.14051/j.cnki.xdyy.2015.12.021.
[5]
饶林梅. 毛竹种子育苗造林技术研究[J]. 绿色科技, 2015(12):85-86,88.
RAO L M. Study on afforestation techniques of Phyllostachys pubescens seed seedling raising[J]. J Green Sci Technol, 2015(12):85-86, 88.DOI: 10.16663/j.cnki.lskj.2015.12.033.
[6]
宋沁春, 魏开, 漆冬梅, 等. 盐胁迫下超声波处理对毛竹种子萌发及幼苗生长的影响[J]. 种子, 2018, 37(3):83-85.
SONG Q C, WEI K, QI D M, et al. Effect of ultrasonic treatment on seed germination and seedling growth of Ph. edulis(Carr.)H.de lehaie under salt stress[J]. Seed, 2018, 37(3):83-85. DOI: 10.16590/j.cnki.1001-4705.2018.03.083.
[7]
蔡春菊, 范少辉, 曹帮华, 等. PEG和GA3引发处理对老化毛竹种子理化特性的影响[J]. 南京林业大学学报(自然科学版), 2018, 42(2):40-46.
CAI C J, FAN S H, CAO B H, et al. Effects of PEG and GA3 priming on the physiological and biochemical characteristics of aged moso bamboo (Phyllostachys edulis) seeds[J]. J Nanjing For Univ (Nat Sci Ed), 2018, 42(2):40-46.DOI: 10.3969/j.issn.1000-2006.201701021.
[8]
蔡春菊, 高健, 牟少华. 60Coγ辐射对毛竹种子活力及早期幼苗生长的影响[J]. 核农学报, 2007, 21(5):436-440,455.
CAI C J, GAO J, MU S H. Effects of 60co γ rays radiation on seed vigor and young seedling growth of phyllostachys edulis[J]. J Nucl Agric Sci, 2007, 21(5):436-440,455.DOI: 10.3969/j.issn.1000-8551.2007.05.003.
[9]
郭龙梅, 姜仟坤, 曹帮华, 等. 浸种温度与时间对毛竹种子发芽的影响研究[J]. 世界竹藤通讯, 2016, 14(2):19-22.
GUO L M, JIANG Q K, CAO B H, et al. Effects of soaking time and temperature on germination of moso bamboo seeds[J]. World Bamboo Rattan, 2016, 14(2):19-22.DOI: 10.13640/j.cnki.wbr.2016.02.005.
[10]
黄业伟, 杨丽, 张智俊. NaCl胁迫对毛竹种子萌发及幼苗生长的影响[J]. 种子, 2009, 28(10):16-18,22.
HUANG Y W, YANG L, ZHANG Z J. Effects of NaCl stress on seeds germination and seedlings growth of Phyllostachys edulis[J]. Seed, 2009, 28(10):16-18,22.DOI: 10.16590/j.cnki.1001-4705.2009.10.069.
[11]
冷华南, 郑康乐, 李国栋, 等. 毛竹种子萌发和幼苗生长对铝胁迫的反应[J]. 浙江林学院学报, 2010, 27(6):851-857.
LENG H N, ZHENG K L, LI G D, et al. Aluminum stress with seed germination and seedling growth in Phyllostachys pubescens[J]. J Zhejiang For Coll, 2010, 27(6):851-857.DOI: 10.3969/j.issn.2095-0756.2010.06.008.
[12]
杨振亚, 周本智, 周燕, 等. PEG模拟干旱对毛竹种子萌发及生长生理特性的影响[J]. 林业科学研究, 2018, 31(6):47-54.
YANG Z Y, ZHOU B Z, ZHOU Y, et al. Effects of drought stress simulated by PEG on seed germination and growth physiological characteristics of Phyllostachys edulis[J]. For Res, 2018, 31(6):47-54.DOI: 10.13275/j.cnki.lykxyj.2018.06.007.
[13]
徐佳慧, 赵晓亭, 毛凯涛, 等. 非生物逆境胁迫下的种子萌发调控机制研究进展[J]. 陕西师范大学学报(自然科学版), 2021, 49(3):71-83.
XU J H, ZHAO X T, MAO K T, et al. Advances in regulatory mechanisms of seed germination under abiotic stresses[J]. J Shaanxi Norm Univ (Nat Sci Ed), 2021, 49(3):71-83.DOI: 10.15983/j.cnki.jsnu.2021.03.013.
[14]
MENG X W, LI X, ZHANG P J, et al. Circular RNA:an emerging key player in RNA world[J]. Brief Bioinform, 2017, 18(4):547-557.DOI: 10.1093/bib/bbw045.
[15]
ZHANG P J, LI S D, CHEN M. Characterization and function of circular RNAs in plants[J]. Front Mol Biosci, 2020, 7:91.DOI: 10.3389/fmolb.2020.00091.
[16]
CHU Q J, ZHANG X C, ZHU X T, et al. Plantcirc base:a database for plant circular RNAs[J]. Mol Plant, 2017, 10(8):1126-1128.DOI: 10.1016/j.molp.2017.03.003.
[17]
ZHANG P, DAI M. CircRNA:a rising star in plant biology[J]. J Genet Genomics, 2022, 49(12):1081-1092.DOI: 10.1016/j.jgg.2022.05.004.
[18]
GAO Z, LI J, LUO M, et al. Characterization and cloning of grape circular RNAs identified the cold resistance-related Vv-circATS1[J]. Plant Physiol, 2019, 180(2):966-985.DOI: 10.1104/pp.18.01331.
[19]
ZHOU J P, YUAN M Z, ZHAO Y X, et al. Efficient deletion of multiple circle RNA loci by CRISPR-Cas9 reveals Os06circ02797 as a putative sponge for OsMIR408 in rice[J]. Plant Biotechnol J, 2021, 19(6):1240-1252.DOI: 10.1111/pbi.13544.
[20]
WANG Y S, GAO Y B, ZHANG H X, et al. Genome-wide profiling of circular RNAs in the rapidly growing shoots of moso bamboo (Phyllostachys edulis)[J]. Plant Cell Physiol, 2019, 60(6):1354-1373.DOI: 10.1093/pcp/pcz043.
[21]
LI Y Q, YANG Y, KONG B, et al. Identification and characterization of circRNAs under drought stress in moso bamboo (Phyllostachys edulis)[J]. Forests, 2022, 13(3):426.DOI: 10.3390/f13030426.
[22]
MEMCZAK S, JENS M, ELEFSINIOTI A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency[J]. Nature, 2013, 495(7441):333-338.DOI: 10.1038/nature11928.
[23]
GAO Y, ZHANG J Y, ZHAO F Q. Circular RNA identification based on multiple seed matching[J]. Brief Bioinform, 2018, 19(5):803-810.DOI: 10.1093/bib/bbx014.
[24]
KIM D, LANGMEAD B, SALZBERG S L. HISAT:a fast spliced aligner with low memory requirements[J]. Nat Methods, 2015, 12(4):357-360.DOI: 10.1038/nmeth.3317.
[25]
ZHAO H S, GAO Z M, WANG L, et al. Chromosome-level reference genome and alternative splicing atlas of moso bamboo (Phyllostachys edulis)[J]. GigaScience, 2018, 7(10):giy115.DOI: 10.1093/gigascience/giy115.
[26]
ZHENG Q P, BAO C Y, GUO W J, et al. Circular RNA profiling reveals an abundant circHIPK3 that regulates cell growth by sponging multiple miRNAs[J]. Nat Commun, 2016, 7:11215.DOI: 10.1038/ncomms11215.
[27]
ROBINSON M D, MCCARTHY D J, SMYTH G K. EdgeR:a bioconductor package for differential expression analysis of digital gene expression data[J]. Bioinformatics, 2010, 26(1):139-140.DOI: 10.1093/bioinformatics/btp616.
[28]
CHEN C J, CHEN H, ZHANG Y, et al. TBtools:an integrative toolkit developed for interactive analyses of big biological data[J]. Mol Plant, 2020, 13(8):1194-1202.DOI: 10.1016/j.molp.2020.06.009.
[29]
GRIMES J E, SMALL M F, FRENCH L L, et al. Chlamydiosis in captive white-winged doves (Zenaida asiatica)[J]. Avian Dis, 1997, 41(2):505-508.
[30]
ASHBURNER M, BALL C A, BLAKE J A, et al. Gene ontology:tool for the unification of biology.the gene ontology consortium[J]. Nat Genet, 2000, 25(1):25-29.DOI: 10.1038/75556.
[31]
CHEN T, LIU Y X, HUANG L Q. ImageGP:an easy-to-use data visualization web server for scientific researchers[J]. iMeta, 2022, 1(1):e5.DOI: 10.1002/imt2.5.
[32]
李甜甜. 水稻组蛋白去甲基化酶基因JMJ705的功能研究[D]. 武汉: 华中农业大学, 2014.
LI T T. Functional analysis of histone demethylase JMJ705in rice[D]. Wuhan: Huazhong Agricultural University, 2014.
[33]
PERRUC E, KINOSHITA N, LOPEZ-MOLINA L. The role of chromatin-remodeling factor PKL in balancing osmotic stress responses during Arabidopsis seed germination[J]. Plant J, 2007, 52(5):927-936.DOI: 10.1111/j.1365-313X.2007.03288.x.
[34]
CHEN G, CUI J W, WANG L, et al. Genome-wide identification of circular RNAs in Arabidopsis thaliana[J]. Front Plant Sci, 2017, 8:1678.DOI: 10.3389/fpls.2017.01678.
[35]
ZHANG P, FAN Y, SUN X P, et al. A large-scale circular RNA profiling reveals universal molecular mechanisms responsive to drought stress in maize and Arabidopsis[J]. Plant J, 2019, 98(4):697-713.DOI: 10.1111/tpj.14267.
[36]
XU Y H, REN Y Z, LIN T B, et al. Identification and characterization of circRNAs involved in the regulation of wheat root length[J]. Biol Res, 2019, 52(1):19.DOI: 10.1186/s40659-019-0228-5.
[37]
LU T T, CUI L L, ZHOU Y, et al. Transcriptome-wide investigation of circular RNAs in rice[J]. RNA, 2015, 21(12):2076-2087.DOI: 10.1261/rna.052282.115.
[38]
MEDINA C A, SAMAC D A, YU L X. Pan-transcriptome identifying master genes and regulation network in response to drought and salt stresses in Alfalfa (Medicago sativa L.)[J]. Sci Rep, 2021, 11(1):17203.DOI: 10.1038/s41598-021-96712-x.
[39]
DASMANDAL T, RAO A R, SAHU S. Identification and characterization of circular RNAs regulating genes responsible for drought stress tolerance in chickpea and soybean[J]. Indian J Genet Plant Breed, 2020, 80(1):1-8.DOI: 10.31742/ijgpb.80.1.1.
[40]
BHATI K K, ALOK A, KUMAR A, et al. Silencing of ABCC13 transporter in wheat reveals its involvement in grain development,phytic acid accumulation and lateral root formation[J]. J Exp Bot, 2016, 67(14):4379-4389.DOI: 10.1093/jxb/erw224.
[41]
LU Q H, WANG Y Q, YANG H B. Effect of exogenous calcium on physiological characteristics of salt tolerance in Tartary buckwheat[J]. Biologia, 2021, 76(12):3621-3630. DOI:10.1007/s11756-021-00904-9.
[42]
EUGENIA DE LA TORRE-HERNANDEZ M, RIVAS-SAN VICENTE M, GREAVES-FERNANDEZ N, et al. Fumonisin B1 induces nuclease activation and salicylic acid accumulation through long-chain sphingoid base build-up in germinating maize[J]. Physiol Mol Plant Pathol, 2010, 74(5/6):337-345.DOI: 10.1016/j.pmpp.2010.05.004.
[43]
DUTILLEUL C, CHAVARRIA H, RÉZÉ N, et al. Evidence for ACD5 ceramide kinase activity involvement in Arabidopsis response to cold stress[J]. Plant Cell Environ, 2015, 38(12):2688-2697.DOI: 10.1111/pce.12578.
[44]
ZHANG Y, ZHAO L M, XIAO H, et al. Knockdown of a novel gene OsTBP2.2 increases sensitivity to drought stress in rice[J]. Genes, 2020, 11(6):629.DOI: 10.3390/genes11060629.
[45]
GAO X, REN F, LU Y T. The Arabidopsis mutant stg1 identifies a function for TBP-associated factor 10 in plant osmotic stress adaptation[J]. Plant Cell Physiol, 2006, 47(9):1285-1294.DOI: 10.1093/pcp/pcj099.

Footnotes

PDF(10701 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/