JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (4): 25-36.doi: 10.12302/j.issn.1000-2006.202205003
Special Issue: 专题报道Ⅰ:郑万钧先生诞辰120周年纪念专题Ⅱ
Previous Articles Next Articles
MA Jianhui(), CHEN Xin*(), GENG Liyang, TANG Chenqian, WEI Xueyan
Received:
2022-05-02
Revised:
2022-06-10
Online:
2024-07-30
Published:
2024-08-05
Contact:
CHEN Xin
E-mail:2556429572@qq.com;chenxinzhou@njfu.edu.cn
CLC Number:
MA Jianhui, CHEN Xin, GENG Liyang, TANG Chenqian, WEI Xueyan. Phylogenetic analysis of Sorbus ser. Folgnerianae (Rosaceae)[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(4): 25-36.
Table 1
Collection information and GenBank accession numbers of three Sorbus ser. Folgnerianae species and S. megalocarpa"
种名species | 采集地 location | 地理坐标 geographical coordinates | 海拔/m altitude | 采集时间 (年-月-日) collection time (year-month-day) | 采集人及凭证标本 collector and voucher | GenBank登录号 GenBank accession number |
---|---|---|---|---|---|---|
棕脉花楸 S. dunnii | 安徽黄山 | 118°10'15.96″E, 30°6'58.38″N | 1 186 | 2019-05-20 | 陈昕、李嘉宝,1430 | OK054488 |
石灰花楸 S. folgneri | 湖北兴山 | 110°29'46.97″E, 31°19' 05.16″N | 1 789 | 2016-05-24 | 陈昕、洑香香、刘清亮,0506 | ON262428 |
石灰花楸 S. folgneri | 四川都江堰 | 103°19'45.68″E, 29°32'50.47″N | 1 163 | 2021-04-23 | 朱大海,2000 | ON262429 |
江南花楸 S. hemsleyi | 湖北神农架 | 110°18'30.14″E, 31°35'55.67″N | 1 830 | 2016-05-25 | 陈昕、洑香香、刘清亮,0522 | OQ100083 |
大果花楸 S. megalocarpa | 四川龙苍沟 | 102°53'13.75″E, 29°37'48.37″N | 1 358 | 2021-03-21 | 胡太伦,1992 | ON259046 |
Fig. 2
Map of five plastid genomes of three Sorbus ser. Folgnerianae species and S. megalocarpa Genes shown outside the outer circle are transcribed clockwise and those inside are transcribed counterclockwise. Genes belonging to different functional groups are color-coded. The dark gray lines in the inner circle indicate GC content, while light gray lines indicate the AT content at each locus."
Table 2
General information of five plastid genomes of three Sorbus ser. Folgnerianae species and S. megalocarpa"
样本 sample | 大小/bp plastome length | 大单拷贝 区长度/ bp LSC length | 小单拷贝 区长度/ bp SSC length | 反向区 长度/bp IR length | 编码区 长度/% coding regions length | 非编码区 长度/% noncoding regions length | GC含量/% GC content | unique 基因数 unique genes | unique 蛋白编码 基因数 unique CDS | tRNA 总数 total tRNA | rRNA 总数 total rRNA | 基因 总数 total genes | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
总计 total | LSC | SSC | IR | CDS | rRNA | tRNA | |||||||||||||||
棕脉花楸 S. dunnii | 160 280 | 88 053 | 19 409 | 26 409 | 56.43 | 43.57 | 36.5 | 34.2 | 30.3 | 42.6 | 37.7 | 55.6 | 53.3 | 113 | 79 | 30 | 4 | 132 | |||
石灰花楸 S. folgneri (ON262428) | 160 631 | 88 333 | 19 480 | 26 409 | 56.32 | 43.68 | 36.4 | 34.1 | 30.2 | 42.6 | 37.7 | 55.6 | 53.3 | 113 | 79 | 30 | 4 | 132 | |||
石灰花楸 S. folgneri (ON262429) | 160 755 | 88 483 | 19 454 | 26 409 | 56.26 | 43.74 | 36.4 | 34.1 | 30.3 | 42.6 | 37.7 | 55.6 | 53.3 | 113 | 79 | 30 | 4 | 132 | |||
江南花楸 S. hemsleyi | 160 527 | 88 415 | 19 304 | 26 404 | 56.34 | 43.66 | 36.4 | 34.1 | 30.3 | 42.7 | 37.7 | 55.6 | 53.3 | 113 | 79 | 30 | 4 | 132 | |||
大果花楸 S. megalocarpa | 159 868 | 87 713 | 19 335 | 26 410 | 56.58 | 43.42 | 36.6 | 34.3 | 30.3 | 42.7 | 37.7 | 55.6 | 53.3 | 113 | 79 | 30 | 4 | 132 |
Table 3
Plastid genome gene content and functional classification in three Sorbus ser. Folgnerianae species and S. megalocarpa"
基因功能 function | 基因分类 gene type | 基因名称 gene | 基因数量 number of genes |
---|---|---|---|
自我复制 self replication | rRNA | rrn4.5a、rrn5a、rrn16a、rrn23a | 4 |
tRNA | trnA-UGC*a、trnC-GCA、trnD-GUC、trnE-UUC、trnF-GAA、 trnfM-CAU、trnG-UCC*、trnG-GCC、trnH-GUG、trnI-CAUa、 trnI-GAU*a、trnK-UUU*、trnL-CAAa、trnL-UAA*、trnL-UAG、 trnM-CAU、trnN-GUUa、trnP-UGG、trnQ-UUG、trnR-ACGa、 trnR-UCU、trnS-GCU、trnS-GGA、trnS-UGA、trnT-GGU、trnT-UGU、 trnV-GACa、trnV-UAC*、trnW-CCA、trnY-GUA | 30 | |
核糖体小亚基 ribosomal proteins(SSU) | rps2、rps3、rps4、rps7a、rps8、rps11、rps12*a、 rps14、rps15、rps16*、rps18、rps19/rps1 | 12 | |
核糖体大亚基 ribosomal proteins(LSU) | rpl2*a、rpl14、rpl16*、rpl20、rpl22、 rpl23a、rpl32、rpl33、rpl36 | 9 | |
RNA聚合酶亚基 RNA polymerase | rpoA、rpoB、rpoC1*、rpoC2 | 4 | |
光合作用 genes for photosynthesis | 光合系统Ⅰ photosystemⅠ | psaA、psaB、psaC、psaI、psaJ, | 5 |
光合系统Ⅱ photosystemⅡ | psbA、psbB、psbC、psbD、psbE、psbF、psbH、psbI、 psbJ、psbK、psbL、psbM、psbN、psbT、psbZ | 15 | |
细胞色素复合物 cytochrome b/f complex | petA、petB*、petD*、petG、petL、petN | 6 | |
ATP合成酶 ATP synthase | atpA、atpB、atpE、atpF*、atpH、atpI | 6 | |
NADH脱氢酶 subunits of NADH-dehydrogenase | ndhA*、ndhB*a、ndhC、ndhD、ndhE、 ndhF、ndhG、ndhH、ndhI、ndhJ、ndhK | 11 | |
二磷酸核酮糖羧化酶大亚基 rubiscoCO large subunit | rbcL | 1 | |
其他基因 hypothetical chloroplast reading frames | 乙酰 CoA 羧化酶 subunit of Acetyl-CoA-carboxylase | accD | 1 |
膜包被蛋白基因 envelop membrane protein gene | cemA | 1 | |
c型细胞色素合成基因 c-type cytochrom synthesis gene | ccsA | 1 | |
蛋白酶基因 protease gene | clpP** | 1 | |
成熟酶基因 maturase gene | matK | 1 | |
翻译起始因子 translation initiation factor | infA | 1 | |
未知功能 unknow function | 假定的质体读码框 hypothetical chloroplast reading frames | ycf1/ycf | 4 |
[1] | 俞德浚, 陆玲娣. 绣线菊属, 牛筋条属, 栒子属, 花楸属, 木瓜海棠属中国植物志第36卷[M]. 北京: 科学出版社, 1974:283-344. |
YU D J, LU L D. Spiraea, Dichotomanthes, Cotoneaster, Sorbus, Chaenomeles. Flora Republicae Popularis, Sinica:Vol. 36[M]. Beijing: Science Press, 1974:283-344. | |
[2] | KAI K, TU L J, SUN H J, et al. Extraction and purification of anthocyanins from Sorbus pohuashanensis fruits[J]. Curr Top Nutraceutical Res, 2020, 18(4):319-324.DOI: 10.37290/ctnr2641-452x.18:319-324. |
[3] | LU L T, SPONGBERG S A. Sorbus Linnaeus[M]// WU Z Y, RAVEN P H, HONG D Y. Flora of China: Vol. 9. Beijing: Science Press, 2003:144-170. |
[4] | PHIPPS J B, ROBERTSON K R, SMITH P G, et al. A checklist of the subfamily maloideae (Rosaceae)[J]. Can J Bot, 1990, 68(10):2209-2269.DOI: 10.1139/b90-288. |
[5] | DON G. A General history of the dichlamydeous plants:Vol.2[M]. London: J G and F Rivington, 1832: 875. https://biodiversitylibrary.org/page/340686. |
[6] | GABRIELIAN E. The genus Sorbus L. in western Asia and the Himalayas[M]. Yerevan: Academy of Sciences of the Armenian SSR, 1978:264+62. |
[7] | ALDASORO J J, AEDO C, GARMENDIA F M, et al. Revision of Sorbus subgenera Aria and Torminaria (Rosaceae-maloideae)[J]. Syst Bot Monogr, 2004, 69:1.DOI: 10.2307/25027918. |
[8] | DECAISNE M J. Mémoirs sur la famille des Pomacées[J]. Nouv arch Mus hist nat, 1874, 10:113-192. |
[9] | SPANCH E. Histoire naturelle des végétaux: phanerogames Ⅱ[M]. Paris: Librairie Encyclopédique de Roret, 1834:1-160. |
[10] | 俞德浚, 关克俭. 中国蔷薇科植物分类之研究(一)[J]. 植物分类学报, 1963, 8(3):202-234. |
YU D J, GUAN K J. Taxa nova Rosacearum sinicarum(Ⅰ)[J]. J Syst Evol, 1963, 8(3):202-234. | |
[11] | CAMPBELL C S, EVANS R C, MORGAN D R, et al. Phylogeny of subtribe Pyrinae (formerly the Maloideae,Rosaceae):limited resolution of a complex evolutionary history[J]. Plant Syst Evol, 2007, 266:119-145.DOI: 10.1007/s00606-007-0545-y. |
[12] | POTTER D, ERIKSSON T, EVANS R C, et al. Phylogeny and classification of Rosaceae[J]. Plant Syst Evol, 2007, 266:5-43.DOI: 10.1007/s00606-007-0539-9. |
[13] | LO E Y Y, DONOGHUE M J. Expanded phylogenetic and dating analyses of the apples and their relatives (Pyreae,Rosaceae)[J]. Mol Phylogenetics Evol, 2012, 63(2):230-243.DOI: 10.1016/j.ympev.2011.10.005. |
[14] | ZHANG S D, JIN J J, CHEN S Y, et al. Diversification of Rosaceae since the Late Cretaceous based on plastid phylogenomics[J]. New Phytol, 2017, 214(3):1355-1367.DOI: 10.1111/nph.14461. |
[15] | LI M, OHI-TOMA T, GAO Y D, et al. Molecular phylogenetics and historical biogeography of Sorbus sensu stricto (Rosaceae)[J]. Mol Phylogenetics Evol, 2017, 111:76-86.DOI: 10.1016/j.ympev.2017.03.018. |
[16] | LIU B B, HONG D Y, ZHOU S L, et al. Phylogenomic analyses of the Photinia complex support the recognition of a new genus Phippsiomeles and the resurrection of a redefined Stranvaesia in Maleae (Rosaceae)[J]. J Syst Evol, 2019, 57(6):678-694.DOI: 10.1111/jse.12542. |
[17] | ULASZEWSKI B, JANKOWSKA-WRÓBLEWSKA S, SWILO K, et al. Phylogeny of maleae (Rosaceae) based on complete chloroplast genomes supports the distinction of Aria,Chamaemespilus and Torminalis as separate Genera,different from Sorbus sp.[J]. Plants (Basel), 2021, 10(11):2534.DOI: 10.3390/plants10112534. |
[18] | 汤晨茜, 仇志欣, 檀超, 等. 陕甘花楸叶绿体基因组及其与爪瓣花楸的系统关系[J]. 园艺学报, 2022, 49(3):641-654. |
TANG C Q, QIU Z X, TAN C, et al. Sorbus koehneana(Rosaceae):its complete chloroplast genome and phylogenetic relationship with S.unguiculata[J]. Acta Hortic Sin, 2022, 49(3):641-654.DOI: 10.16420/j.issn.0513-353x.2021-0040. | |
[19] | HUANG H, SHI C, LIU Y, et al. Thirteen Camellia chloroplast genome sequences determined by high-throughput sequencing:genome structure and phylogenetic relationships[J]. BMC Evol Biol, 2014, 14:151.DOI: 10.1186/1471-2148-14-151. |
[20] | BARRETT C F, BAKER W J, COMER J R, et al. Plastid genomes reveal support for deep phylogenetic relationships and extensive rate variation among palms and other commelinid monocots[J]. New Phytol, 2016, 209(2):855-870.DOI: 10.1111/nph.13617. |
[21] | BROCK J R, MANDÁKOVÁ T, MCKAIN M, et al. Chloroplast phylogenomics in Camelina (Brassicaceae) reveals multiple origins of polyploid species and the maternal lineage of C.sativa[J]. Hortic Res, 2022, 9:uhab050.DOI: 10.1093/hr/uhab050. |
[22] | JIN J J, YU W B, YANG J B, et al. Get Organelle:a fast and versatile toolkit for accurate de novo assembly of organelle genomes[J]. Genome Biol, 2020, 21(1):241.DOI: 10.1186/s13059-020-02154-5. |
[23] | WICK R R, SCHULTZ M B, ZOBEL J, et al. Bandage:interactive visualization of de novo genome assemblies[J]. Bioinformatics, 2015, 31(20):3350-3352.DOI: 10.1093/bioinformatics/btv383. |
[24] | QU X J, MOORE M J, LI D Z, et al. PGA:a software package for rapid,accurate,and flexible batch annotation of plastomes[J]. Plant Methods, 2019, 15:50.DOI: 10.1186/s13007-019-0435-7. |
[25] | KEARSE M, MOIR R, WILSON A, et al. Geneious basic:an integrated and extendable desktop software platform for the organization and analysis of sequence data[J]. Bioinformatics, 2012, 28(12):1647-1649.DOI: 10.1093/bioinformatics/bts199. |
[26] | GREINER S, LEHWARK P, BOCK R. Organellar GenomeDRAW (OGDRAW) version 1.3.1:expanded toolkit for the graphical visualization of organellar genomes[J]. Nucleic Acids Res, 2019, 47(W1):59-64.DOI: 10.1093/nar/gkz238. |
[27] | BEIER S, THIEL T, MÜNCH T, et al. MISA-web:a web server for microsatellite prediction[J]. Bioinformatics, 2017, 33(16):2583-2585.DOI: 10.1093/bioinformatics/btx198. |
[28] | KURTZ S, CHOUDHURI J V, OHLEBUSCH E, et al. REPuter:the manifold applications of repeat analysis on a genomic scale[J]. Nucleic Acids Res, 2001, 29(22):4633-4642.DOI: 10.1093/nar/29.22.4633. |
[29] | MAYOR C, BRUDNO M, SCHWARTZ J R, et al. VISTA:visualizing global DNA sequence alignments of arbitrary length[J]. Bioinformatics, 2000, 16(11):1046-1047.DOI: 10.1093/bioinformatics/16.11.1046. |
[30] | AMIRYOUSEFI A, HYVÖNEN J, POCZAI P. IRscope:an online program to visualize the junction sites of chloroplast genomes[J]. Bioinformatics, 2018, 34(17):3030-3031.DOI: 10.1093/bioinformatics/bty220. |
[31] | KATOH K, STANDLEY D M. MAFFT multiple sequence alignment software version 7:improvements in performance and usability[J]. Mol Biol Evol, 2013, 30(4):772-780.DOI: 10.1093/molbev/mst010. |
[32] | STAMATAKIS A. RAxML version 8:a tool for phylogenetic analysis and post-analysis of large phylogenies[J]. Bioinformatics, 2014, 30(9):1312-1313.DOI: 10.1093/bioinformatics/btu033. |
[33] | POSADA D, CRANDALL K A. MODELTEST:testing the model of DNA substitution[J]. Bioinformatics, 1998, 14(9):817-818.DOI: 10.1093/bioinformatics/14.9.817. |
[34] | RONQUIST F, TESLENKO M, van der MARK P, et al. MrBayes 3.2:efficient Bayesian phylogenetic inference and model choice across a large model space[J]. Syst Biol, 2012, 61(3):539-542.DOI: 10.1093/sysbio/sys029. |
[35] | WANG Q, NIU Z Y, LI J B, et al. The complete chloroplast genome sequence of the Chinese endemic species Sorbus setschwanensis (Rosaceae) and its phylogenetic analysis[J]. Nord J Bot, 2020, 38(2):e02532.DOI: 10.1111/njb.02532. |
[36] | 李倩, 郭其强, 高超, 等. 贵州威宁红花油茶的叶绿体基因组特征分析[J]. 园艺学报, 2020, 47(4):779-787. |
LI Q, GUO Q Q, GAO C, et al. Characterization of complete chloroplast genome of Camellia weiningensis in Weining,Guizhou Province[J]. Acta Hortic Sin, 2020, 47(4):779-787.DOI: 10.16420/j.issn.0513-353x.2019-0410. | |
[37] | 赵儒楠, 褚晓洁, 刘维, 等. 鹅耳枥属树种叶绿体基因组结构及变异分析[J]. 南京林业大学学报(自然科学版), 2021, 45(2):25-34. |
ZHAO R N, CHU X J, LIU W, et al. Structure and variation analyses of chloroplast genomes in Carpinus[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(2):25-34.DOI: 10.12302/j.issn.1000-2006.202009007. | |
[38] | MENEZES A P A, RESENDE-MOREIRA L C, BUZATTI R S O, et al. Chloroplast genomes of Byrsonima species (Malpighiaceae):comparative analysis and screening of high divergence sequences[J]. Sci Rep, 2018, 8(1):2210.DOI: 10.1038/s41598-018-20189-4. |
[39] | KIMURA T, IKETANI H, KOTOBUKI K, et al. Genetic characterization of pear varieties revealed by chloroplast DNA sequences[J]. J Hortic Sci Biotechnol, 2003, 78(2):241-247.DOI: 10.1080/14620316.2003.11511612. |
[40] | ROH M S, CHEONG E J, CHOI I Y, et al. Characterization of wild Prunus yedoensis analyzed by inter-simple sequence repeat and chloroplast DNA[J]. Sci Hortic, 2007, 114(2):121-128.DOI: 10.1016/j.scienta.2007.06.005. |
[41] | YAZBEK M, OH S-H. Peaches and almonds:phylogeny of Prunus subg. amygdalus (Rosaceae) based on DNA sequences and morphology[J]. Plant Syst Evol, 2013, 299(8):1403-1418.DOI: 10.1007/s00606-013-0802-1. |
[42] | THODE V A, LOHMANN L G. Comparative chloroplast genomics at low taxonomic levels:a case study using Amphilophium (Bignonieae,Bignoniaceae)[J]. Front Plant Sci, 2019, 10:796.DOI: 10.3389/fpls.2019.00796. |
[43] | WANG Y H, WANG S, LIU Y L, et al. Chloroplast genome variation and phylogenetic relationships of Atractylodes species[J]. BMC Genomics, 2021, 22(1):103.DOI: 10.1186/s12864-021-07394-8. |
[44] | SUN J H, SHI S, LI J L, et al. Phylogeny of maleae (Rosaceae) based on multiple chloroplast regions:implications to genera circumscription[J]. Biomed Res Int, 2018, 2018:7627191.DOI: 10.1155/2018/7627191. |
[45] | LI Q Y, GUO W, LIAO W B, et al. Generic limits of Pyrinae:insights from nuclear ribosomal DNA sequences[J]. Bot Stud, 2012, 53(1):151-164. |
[46] | QIU J, CHEN L, YI X G, et al. The complete chloroplast genome of Sorbus folgneri (C.K.Schneid.) Rehder (Rosaceae)[J]. Mitochondrial DNA B, 2019, 4(1):728-729.DOI: 10.1080/23802359.2018.1558127. |
[1] | ZHAI Xuechang, PENG Li, YAN Haifei, ZHU Kefan, ZHANG Shuyan, ZHANG Caiyun, LU Xiankai. Comparative chloroplast genomics of the important resource plant Kadsura coccinea [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(6): 71-78. |
[2] | WU Changfeng, GUO Jing, WANG Guibin. Morphological and physiological responses of male and female Ginkgo biloba to temperature changes [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(4): 150-158. |
[3] | CHEN Zhihan, SHANG Xin, XIE Zin, ZHANG Xin. Phylogenetic relationship and evolutionary patterns of Tsuga pollen morphology: a cluster analysis-based study [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(4): 37-45. |
[4] | YI Xiangui, LI Meng, WANG Xianrong. A review on the taxonomy study of Prunus subgen. Cerasus (Mill) A. Gray [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(3): 46-57. |
[5] | LU Xudong, DONG Yuran, LI Yao, MAO Lingfeng. Community assembly mechanism for different planting ages of Chinese fir artificial forests in subtropical China [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(1): 67-73. |
[6] | QIU Jing, LI Jiabao, ZHU Dahai, CHEN Xin. Taxonomic implications of genome sizes and micromorphological characteristics of leaf epidermis of species in Sorbus Sect. Alnifoliae [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(3): 77-86. |
[7] | OU Jiande. Effects of forking on the crown morphology, growth and form quality of Taxus chinensis var. mairei [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(2): 87-94. |
[8] | XIANG Li, YIN Tongming, CHEN Yingnan. The dynamic observation of male and female inflorescence establishment of Salix suchowensis in Nanjing area [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(1): 154-162. |
[9] | LI Zhenshuang, WANG Qian, ZHU Yuan, YANG Fucheng, LIANG Junfeng, LU Junkun. Effects of exogenous signal substances on growth and photosynthetic characteristics of Santalum album seedlings [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(6): 271-278. |
[10] | ZHANG Qingyuan, TIAN Ye, WANG Miao, ZHAI Zheng, ZHOU Shichao. Phenotypic traits differentiations and classifications of the F1 hybrid progenies of Populus deltoides × P. cathayana at the seedling stage [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(5): 40-48. |
[11] | YANG Yuhua, JIAN Jingjing, QIU Xiaodie, WANG Guijiao, ZONG Jianwei. Effects of combined saline-alkali stress on physiological and biochemical characteristics of OT hybrid lily [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(4): 117-126. |
[12] | LIU Zemao, YAN Xin, WU Wen, ZHANG Yuhui, YU Fangyuan. Effects of bamboo charcoal on the growth and nutrient status of Zelkova schneideriana container seedlings [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(2): 111-118. |
[13] | YANG Yong, YANG Zhi, DUAN Yifan, FANG Yanming. Herbariomics: a new and powerful approach for dendrological studies [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(1): 1-6. |
[14] | SUN Kai, JIANG Jianping, DING Yulong, RAMAKRISHNAU Muthusamy, WEI Qiang. Morphological and anatomical analyses of moso bamboo culm necks [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(6): 40-46. |
[15] | YAO Zhengming, TIAN Xuqin, MENG Huili, DENG Yunfei. The new distribution of Strobilanthes retusa (Acanthaceae) in Guizhou with supplementary description [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(4): 177-182. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||