
Estimation of forest net primary productivity based on sentinel active and passive remote sensing data and canopy height
TIAN Chunhong, LI Mingyang, LI Tao, LI Dengpan, TIAN Lei
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (4) : 132-140.
Estimation of forest net primary productivity based on sentinel active and passive remote sensing data and canopy height
【Objective】Using open source active and passive remote sensing data (Sentinel-1 & -2) combined with forest canopy height can improve the estimation accuracy of forest net primary productivity (NPP), to provide a scientific basis for the formulation of forest precision management stragtegies and a “carbon peaking and carbon neutrality” strategy.【Method】Zixing City, which is a key forest area in the south, was used as the research area. Based on Sentinel-1 and Sentinel-2 active and passive remote sensing data, four models, namely multiple stepwise regression, artificial neural network, K-nearest neighbor, and random forest, were used to estimate NPP. On this basis, the canopy height obtained by Sentinel-1 through the difference between InSAR and SRTM DEM was added to analyze its effect on the accuracy of NPP estimation.【Result】(1) The mean value of forest NPP in the study area in 2019 was 7.79 t/hm2, showing the spatial distribution characteristics of high in the central southwest and low in the northwest. (2) Among the four models, the accuracy of NPP estimation by active and passive remote sensing was higher than that by single remote sensing; the accuracy of random forest estimation of regional forest NPP was the highest, and the model performed the best. (3) Adding canopy height improved the estimation accuracy of forest NPP to a certain extent, with R2 increased from 0.70 to 0.75.【Conclusion】The accuracy of NPP estimation can be improved based on Sentinel active and passive remote sensing data and canopy height factor, which is obtained by DEM difference method.
forest net primary productivity / sentinel data / ICESat-2 / forest canopy height / Zixing City / smart forestry and forest precision management
[1] |
陈利军, 刘高焕, 励惠国. 中国植被净第一性生产力遥感动态监测[J]. 遥感学报, 2002, 6(2):129-135.
|
[2] |
刘国华, 傅伯杰, 方精云. 中国森林碳动态及其对全球碳平衡的贡献[J]. 生态学报, 2000, 20(5):733-740.
|
[3] |
朱文泉, 潘耀忠, 张锦水. 中国陆地植被净初级生产力遥感估算[J]. 植物生态学报, 2007, 31(3):413-424.
|
[4] |
郭睿妍, 田佳, 杨志玲, 等. 基于GEE平台的黄河流域森林植被净初级生产力时空变化特征[J]. 生态学报, 2022, 42(13):5437-5445.
|
[5] |
|
[6] |
|
[7] |
林文鹏, 王臣立, 赵敏, 等. 基于森林清查和遥感的城市森林净初级生产力估算[J]. 生态环境, 2008, 17(2):766-770.
|
[8] |
|
[9] |
|
[10] |
|
[11] |
李陶, 李明阳, 钱春花. 结合冠层密度的森林净初级生产力遥感估测[J]. 南京林业大学学报(自然科学版), 2021, 45(5):153-160.
|
[12] |
|
[13] |
李登秋. 亚热带森林碳收支变化特征及其成因模拟分析[D]. 南京: 南京大学, 2014.
|
[14] |
史瑶. 基于MSPA和MCR模型的资兴市生态网络构建研究[D]. 长沙: 中南林业科技大学, 2019.
|
[15] |
李轲敏, 傅丽华, 郭湘. 资兴市自然保护地空间冲突与重构研究[J]. 湖南工业大学学报, 2022, 36(2):86-94.
|
[16] |
余超, 王斌, 刘华, 等. 中国森林植被净生产量及平均生产力动态变化分析[J]. 林业科学研究, 2014, 27(4):542-550.
|
[17] |
温小荣, 蒋丽秀, 刘磊, 等. 江苏省森林生物量与生产力估算及空间分布格局分析[J]. 西北林学院学报, 2014, 29(1):36-40.
|
[18] |
董佳臣, 倪文俭, 张志玉, 等. ICESat-2植被冠层高度和地表高程数据产品用于森林高度提取的效果评价[J]. 遥感学报, 2021, 25(6):1294-1307.
|
[19] |
孙美美. 黄土丘陵区三种典型森林类型生产力形成及影响因素[D]. 杨凌: 西北农林科技大学, 2021.
|
[20] |
黄昕. 高分辨率遥感影像多尺度纹理、形状特征提取与面向对象分类研究[D]. 武汉: 武汉大学, 2009.
|
[21] |
刘俊, 毕华兴, 朱沛林, 等. 基于ALOS遥感数据纹理及纹理指数的柞树蓄积量估测[J]. 农业机械学报, 2014, 45(7):245-254.
|
[22] |
陈琳. 基于光学和干涉雷达的森林地上生物量遥感估算模型研究[D]. 长春: 中国科学院大学(中国科学院东北地理与农业生态研究所), 2020.
|
[23] |
|
[24] |
|
[25] |
|
[26] |
范文义, 张海玉, 于颖, 等. 三种森林生物量估测模型的比较分析[J]. 植物生态学报, 2011, 35(4):402-410.
|
[27] |
陈尔学, 李增元, 武红敢, 等. 基于k-NN和Landsat数据的小面积统计单元森林蓄积估测方法[J]. 林业科学研究, 2008, 21(6):745-750.
|
[28] |
|
[29] |
李欣海. 随机森林模型在分类与回归分析中的应用[J]. 应用昆虫学报, 2013, 50(4):1190-1197.
|
[30] |
|
[31] |
潘磊, 孙玉军, 王轶夫, 等. 基于Sentinel-1和Sentinel-2数据的杉木林地上生物量估算[J]. 南京林业大学学报(自然科学版), 2020, 44(3):149-156.
|
[32] |
|
[33] |
高志强, 刘纪远. 中国植被净生产力的比较研究[J]. 科学通报, 2008, 53(3):317-326.
|
[34] |
陈晓玲, 曾永年. 亚热带山地丘陵区植被NPP时空变化及其与气候因子的关系:以湖南省为例[J]. 地理学报, 2016, 71(1):35-48.
|
[35] |
闫妍, 覃金华, 房磊, 等. 湖南省植被净初级生产力时空动态及其与气候因素的关系[J]. 生态学杂志, 2022, 41(8):1535-1544.
|
[36] |
江源通. 湘江流域植被NPP时空动态及影响因素分析[D]. 湘潭: 湖南科技大学, 2015.
|
[37] |
张骏. 中国中亚热带东部森林生态系统生产力和碳储量研究[D]. 杭州: 浙江大学, 2008.
|
/
〈 |
|
〉 |