JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (5): 1-10.doi: 10.12302/j.issn.1000-2006.202205024
Previous Articles Next Articles
WANG Ziyue(), ZHEN Yan(), LIU Guangxin, XI Mengli()
Received:
2022-05-16
Revised:
2022-06-24
Online:
2022-09-30
Published:
2022-10-19
Contact:
XI Mengli
E-mail:y20wzy@163.com;zhenyanniso@aliyun.com;ximenglinjfu@126.com
CLC Number:
WANG Ziyue, ZHEN Yan, LIU Guangxin, XI Mengli. Assay for transposase-accessible chromatin with high-throughput sequencing and its application prospect in woody plants[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(5): 1-10.
Table 1
Comparison of five chromatin accessibility methods"
方法 method | 细胞类型 type of cells | 所需细胞数量/万个 number of input cells required | 所需时间/d required time | 获取原理 principle | 特点 specific features |
---|---|---|---|---|---|
DNase-seq | 任何细胞 | 100~1 000 | 1~3 | 使用限制性内切酶(DNase Ⅰ)对样品进行片段化处理,切割不受蛋白保护的染色质区域 | 1)需要大量细胞作为实验材料 2)可在全基因组范围内检测蛋白质结合位点 3)制备样品过程复杂 |
FAIRE-seq | 任何细胞 | 100~1 000 | 2~3 | 使用超声波打断DNA序列,随后酚-氯仿富集 | 1)需要大量细胞作为实验材料 2)背景信号高,数据分析困难 3)甲醛交联程度难以确定 |
ATAC-seq | 新鲜分离的细胞或 缓慢冷却的冷冻细胞 | 0.05~5.00 | <1 | 使用Tn5转座酶,完整地获取整个开放染色质区域 | 1)细胞需求量少 2)操作简便、效率高 3)线粒体和叶绿体对实验结果有影响 4)后续数据分析有局限性 |
MNase-seq | 任何细胞 | 1~10 | 2 | 使用限制性外切酶(微球菌核酸酶),对DNA进行切割,可绘制核小体图谱 | 1)需要大量细胞作为实验材料 2)可获得单个核小体的DNA 3)酶用量和酶解时间难以确定 4)MNase存在对A/T碱基序列的切割倾向性 |
NOMe-seq | 任何细胞 | 100 | 1~2 | 使用GpC甲基转移酶对DNA进行化学修饰来检测染色质可及性 | 1)需要大量细胞作为实验材料 2)可同时进行核小体定位和CpG 甲基化分析 3)需要大量的测序读数 |
Table 2
Comparison of three methods for nuclear purification"
方法 method | 原理 principle | 优点 advantage | 植物物种应用 applied species | 发表年份 published year |
---|---|---|---|---|
Crude-ATAC-seq | 裂解细胞器及蔗糖 沉淀获取细胞核 | 适用于大多数植物, 无须进行转基因操作 | 拟南芥 (Arabidopsis thaliana) | 2017[ |
INTACT-ATAC-seq | 从标记的特定细胞 类型中提取细胞核 | 降低了细胞器 DNA的污染 | 苜蓿(Medicago sativa)、番茄(Solanun lycopersicum)、水稻(Oryza sativa) 和拟南芥 | 2017[ |
FANS-ATAC-seq | 利用流式细胞仪对 细胞核进行分选 | |||
拟南芥 | 2016[ |
[1] | KORNBERG R D. Chromatin structure:a repeating unit of histones and DNA[J]. Science, 1974, 184(4139):868-871.DOI:10.1126/science.184.4139.868. |
[2] | 康争春, 闫飞虎, 王振, 等. 染色质开放状态对结肠癌相关功能通路影响的生物信息学分析[J]. 第二军医大学学报, 2021, 42(7):762-769. |
KANG Z C, YAN F H, WANG Z, et al. Effect of chromatin opening state on colon cancer-related functional pathways: a bioinformatics analysis[J]. Acad J Second Mil Med Univ, 2021, 42(7):762-769.DOI:10.16781/j.0258-879x.2021.07.0762. | |
[3] | JENUWEIN T, FORRESTER W C, FERNÁNDEZ-HERRERO L A, et al. Extension of chromatin accessibility by nuclear matrix attachment regions[J]. Nature, 1997, 385(6613):269-272.DOI:10.1038/385269a0. |
[4] | STALDER J, LARSEN A, ENGEL J D, et al. Tissue-specific DNA cleavages in the globin chromatin domain introduced by DNAase I[J]. Cell, 1980, 20(2):451-460.DOI:10.1016/0092-8674(80)90631-5. |
[5] | SAKAI A, WEISER C J. Freezing resistance of trees in north America with reference to tree regions[J]. Ecology, 1973, 54(1):118-126.DOI:10.2307/1934380. |
[6] | JIANG J M. The ‘dark matter’ in the plant genomes: non-coding and unannotated DNA sequences associated with open chromatin[J]. Curr Opin Plant Biol, 2015, 24:17-23.DOI:10.1016/j.pbi.2015.01.005. |
[7] | ZHANG W, ZHANG T, WU Y, et al. Open chromatin in plant genomes[J]. Cytogenet Genome Res, 2014, 143(1/2/3):18-27.DOI:10.1159/000362827. |
[8] | GROSS D S, GARRARD W T. Nuclease hypersensitive sites in chromatin[J]. Annu Rev Biochem, 1988, 57:159-197.DOI:10.1146/annurev.bi.57.070188.001111. |
[9] | BOYLE A P, DAVIS S, SHULHA H P, et al. High-resolution mapping and characterization of open chromatin across the genome[J]. Cell, 2008, 132(2):311-322.DOI:10.1016/j.cell.2007.12.014. |
[10] | GIRESI P G, KIM J, MCDANIELL R M, et al. FAIRE (formaldehyde-assisted isolation of regulatory elements) isolates active regulatory elements from human chromatin[J]. Genome Res, 2007, 17(6):877-885.DOI:10.1101/gr.5533506. |
[11] | SCHONES D E, CUI K R, CUDDAPAH S, et al. Dynamic regulation of nucleosome positioning in the human genome[J]. Cell, 2008, 132(5):887-898.DOI:10.1016/j.cell.2008.02.022. |
[12] | KELLY T K, LIU Y P, LAY F D, et al. Genome-wide mapping of nucleosome positioning and DNA methylation within individual DNA molecules[J]. Genome Res, 2012, 22(12):2497-2506.DOI:10.1101/gr.143008.112. |
[13] | BUENROSTRO J D, GIRESI P G, ZABA L C, et al. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin,DNA-binding proteins and nucleosome position[J]. Nat Methods, 2013, 10(12):1213-1218.DOI:10.1038/nmeth.2688. |
[14] | OH K S, HA J S, BAEK S, et al. XL-DNase-seq: improved footprinting of dynamic transcription factors[J]. Epigenetics Chromatin, 2019, 12(1):30.DOI:10.1186/s13072-019-0277-6. |
[15] | HUANG C R, BURNS K H, BOEKE J D. Active transposition in genomes[J]. Annu Rev Genet, 2012, 46:651-675.DOI:10.1146/annurev-genet-110711-155616. |
[16] | SUN Y Y, MIAO N, SUN T. Detect accessible chromatin using ATAC-sequencing,from principle to applications[J]. Hereditas, 2019, 156(1):29.DOI:10.1186/s41065-019-0105-9. |
[17] | WANG F X, SHANG G D, WU L Y, et al. Protocol for assaying chromatin accessibility using ATAC-seq in plants[J]. STAR Protoc, 2021, 2(1):100289.DOI:10.1016/j.xpro.2020.100289. |
[18] | THIBIVILLIERS S, ANDERSON D, LIBAULT M. Isolation of plant root nuclei for single cell RNA sequencing[J]. Curr Protoc Plant Biol, 2020, 5(4):e20120.DOI:10.1002/cppb.20120. |
[19] | BAJIC M, MAHER K A, DEAL R B. Identification of open chromatin regions in plant genomes using ATAC-seq[M]// Methods in Molecular Biology. New York: Springer, 2017:183-201.DOI:10.1007/978-1-4939-7318-7_12. |
[20] | 欧阳也, 秦玉婷, 姚超, 等. 利用ATAC-seq技术研究Ⅰ型干扰素通路活化后人单核细胞的染色质开放性改变[J]. 上海交通大学学报(医学版), 2019, 39(5):451-457. |
OUYANG Y, QIN Y T, YAO C, et al. Using ATAC-seq to identify the chromatin accessibility activated by type Ⅰ interferon in human monocytes[J]. J Shanghai Jiao Tong Univ (Med Sci), 2019, 39(5):451-457.DOI:10.3969/j.issn.1674-8115.2019.05.003. | |
[21] | LU Z F, HOFMEISTER B T, VOLLMERS C, et al. Combining ATAC-seq with nuclei sorting for discovery of cis-regulatory regions in plant genomes[J]. Nucleic Acids Res, 2016, 45(6):e41.DOI:10.1093/nar/gkw1179. |
[22] | ZHOU C, YUAN Z, MA X P, et al. Accessible chromatin regions and their functional interrelations with gene transcription and epigenetic modifications in sorghum genome[J]. Plant Commun, 2020, 2(1):100140.DOI:10.1016/j.xplc.2020.100140. |
[23] | MAHER K A, BAJIC M, KAJALA K, et al. Profiling of accessible chromatin regions across multiple plant species and cell types reveals common gene regulatory principles and new control modules[J]. Plant Cell, 2017, 30(1):15-36.DOI:10.1105/tpc.17.00581. |
[24] | SIJACIC P, BAJIC M, MCKINNEY E C, et al. Changes in chromatin accessibility between Arabidopsis stem cells and mesophyll cells illuminate cell type-specific transcription factor networks[J]. Plant J, 2018, 94(2):215-231.DOI:10.1111/tpj.13882. |
[25] | CONCIA L, VELUCHAMY A, RAMIREZ-PRADO J S, et al. Wheat chromatin architecture is organized in genome territories and transcription factories[J]. Genome Biol, 2020, 21(1):104.DOI:10.1186/s13059-020-01998-1. |
[26] | 韩金磊, 李占杰, 王凯. 基于开放染色质的全基因组水平转录调控元件的研究方法与进展[J]. 福建农林大学学报(自然科学版), 2017, 46(1):1-8. |
HAN J L, LI Z J, WANG K. Progress on genome-wide identification and analysis of transcriptional regulatory elements based on open-chromatin signatures[J]. J Fujian Agric For Univ (Nat Sci Ed), 2017, 46(1):1-8.DOI:10.13323/j.cnki.j.fafu(nat.sci.).2017.01.001. | |
[27] | GRANDI F C, MODI H, KAMPMAN L, et al. Chromatin accessibility profiling by ATAC-seq[J]. Nat Protoc, 2022, 17(6):1518-1552.DOI:10.1038/s41596-022-00692-9. |
[28] | 吴杰, 全建平, 叶勇, 等. 染色质转座酶可及性测序研究进展[J]. 遗传, 2020, 42(4):333-346. |
WU J, QUAN J P, YE Y, et al. Advances in assay for transposase-accessible chromatin with high-throughput sequencing[J]. Hereditas, 2020, 42(4):333-346.DOI:10.16288/j.yczz.19-279. | |
[29] | ZHU T, LIAO K Y, ZHOU R F, et al. ATAC-seq with unique molecular identifiers improves quantification and footprinting[J]. Commun Biol, 2020, 3:675.DOI:10.1038/s42003-020-01403-4. |
[30] | SHAW P J. Nuclear organization in plants[J]. Essays Biochem, 1996, 31:77-89. |
[31] | SIKORSKAITE S, RAJAMÄKI M L, BANIULIS D, et al. Protocol:optimised methodology for isolation of nuclei from leaves of species in the Solanaceae and Rosaceae families[J]. Plant Methods, 2013, 9:31.DOI:10.1186/1746-4811-9-31. |
[32] | 曲瑞红. 利用ATAC-seq分析拟南芥四种细胞全基因组范围内染色质的开放程度[D]. 杨凌: 西北农林科技大学, 2020. |
QU R H. Analyzing the openness of genome-wide chromatin of four types cells from Arabidopsis using ATAC-seq[D]. Yangling: Northwest A & F University, 2020. | |
[33] | DEAL R B, HENIKOFF S. A simple method for gene expression and chromatin profiling of individual cell types within a tissue[J]. Dev Cell, 2010, 18(6):1030-1040.DOI:10.1016/j.devcel.2010.05.013. |
[34] | ZHANG C Q, BARTHELSON R A, LAMBERT G M, et al. Global characterization of cell-specific gene expression through fluorescence-activated sorting of nuclei[J]. Plant Physiol, 2008, 147(1):30-40.DOI:10.1104/pp.107.115246. |
[35] | GALBRAITH D W, HARKINS K R, MADDOX J M, et al. Rapid flow cytometric analysis of the cell cycle in intact plant tissues[J]. Science, 1983, 220(4601):1049-1051.DOI:10.1126/science.220.4601.1049. |
[36] | SULLIVAN A M, ARSOVSKI A A, LEMPE J, et al. Mapping and dynamics of regulatory DNA and transcription factor networks in A.thaliana[J]. Cell Rep, 2014, 8(6):2015-2030.DOI:10.1016/j.celrep.2014.08.019. |
[37] | PAJORO A, MADRIGAL P, MUIÑO J M, et al. Dynamics of chromatin accessibility and gene regulation by MADS-domain transcription factors in flower development[J]. Genome Biol, 2014, 15(3):R41.DOI:10.1186/gb-2014-15-3-r41. |
[38] | FRERICHS A, ENGELHORN J, ALTMÜLLER J, et al. Specific chromatin changes mark lateral organ founder cells in the Arabidopsis inflorescence meristem[J]. J Exp Bot, 2019, 70(15):3867-3879.DOI:10.1093/jxb/erz181. |
[39] | 祝涛. UMI-ATAC-seq数据分析及植物单细胞ATAC-seq技术的探索[D]. 武汉: 华中农业大学, 2021. |
ZHU T. Analysis of UMI-ATAC-seq data and exploration of plant single cell ATAC-seq technique[D]. Wuhan: Huazhong Agricultural University, 2021. | |
[40] | 熊和丽, 沙茜, 刘韶娜, 等. 单细胞转录组测序技术在动物上的应用研究[J]. 生物技术通报, 2022, 38(3):226-233. |
XIONG H L, SHA Q, LIU S N, et al. Application of single-cell transcriptome sequencing in animals[J]. Biotechnol Bull, 2022, 38(3):226-233.DOI:10.13560/j.cnki.biotech.bull.1985.2021-0523. | |
[41] | 文路, 汤富酬. 单细胞转录组高通量测序分析新进展[J]. 遗传, 2014, 36(11):1069-1076. |
WEN L, TANG F C. Recent progress in single-cell RNA-seq analysis[J]. Hereditas, 2014, 36(11):1069-1076.DOI:10.3724/SP.J.1005.2014.1069. | |
[42] | DORRITY M W, ALEXANDRE C M, HAMM M O, et al. The regulatory landscape of Arabidopsis thaliana roots at single-cell resolution[J]. Nat Commun, 2021, 12:3334.DOI:10.1038/s41467-021-23675-y. |
[43] | 倪兵, 高维武. 单细胞表观遗传测序技术最新进展[J]. 陆军军医大学学报, 2022, 44(1):74-78. |
NI B, GAO W W. Recent advances in single-cell epigenetic sequencing technology[J]. J Army Med Univ, 2022, 44(1):74-78.DOI:10.16016/j.1000-5404.202109020. | |
[44] | FARMER A, THIBIVILLIERS S, RYU K H, et al. Single-nucleus RNA and ATAC sequencing reveals the impact of chromatin accessibility on gene expression in Arabidopsis roots at the single-cell level[J]. Mol Plant, 2021, 14(3):372-383.DOI:10.1016/j.molp.2021.01.001. |
[45] | CHEN S, LAKE B B, ZHANG K. High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell[J]. Nat Biotechnol, 2019, 37(12):1452-1457.DOI:10.1038/s41587-019-0290-0. |
[46] | ZHOU L M, HUANG Y Z, WANG Q, et al. Chromatin accessibility is associated with artemisinin biosynthesis regulation in Artemisia annua[J]. Molecules, 2021, 26(4):1194.DOI:10.3390/molecules26041194. |
[47] | 金晶. 光温敏水稻武香S染色质可接近性变化及转录调控网络的研究[D]. 武汉: 武汉大学, 2019. |
JIN J. Study on chromatin accessibility changes and transcriptional regulatory networks of the rice PTGMS line Wuxiang S[D]. Wuhan: Wuhan University, 2019. | |
[48] | YAN F, POWELL D R, CURTIS D J, et al. From reads to insight: a hitchhiker's Guide to ATAC-seq data analysis[J]. Genome Biol, 2020, 21(1):22.DOI:10.1186/s13059-020-1929-3. |
[49] | IJAZ U. Plant Cis-regulatory elements:Methods of identification and applications[J]. Asian J Agric Biol, 2020, 8(2):207-222.DOI:10.35495/ajab.2019.08.352. |
[50] | REN C, LI H Y, WANG Z M, et al. Characterization of chromatin accessibility and gene expression upon cold stress reveals that the RAV1 transcription factor functions in cold response in Vitis amurensis[J]. Plant Cell Physiol, 2021, 62(10):1615-1629.DOI:10.1093/pcp/pcab115. |
[51] | WANG P J, JIN S, CHEN X J, et al. Chromatin accessibility and translational landscapes of tea plants under chilling stress[J]. Hortic Res, 2021, 8:96.DOI:10.1038/s41438-021-00529-8. |
[52] | WILKINS O, HAFEMEISTER C, PLESSIS A, et al. EGRINs (environmental gene regulatory influence networks) in rice that function in the response to water deficit,high temperature,and agricultural environments[J]. Plant Cell, 2016, 28(10):2365-2384.DOI:10.1105/tpc.16.00158. |
[53] | LOCKHART J. Field of genes: uncovering EGRINs (environmental gene regulatory influence networks) in rice that function during high-temperature and drought stress[J]. Plant Cell, 2016, 28(10):2346-2347.DOI:10.1105/tpc.16.00730. |
[54] | DING P T, SAKAI T, KRISHNA SHRESTHA R, et al. Chromatin accessibility landscapes activated by cell-surface and intracellular immune receptors[J]. J Exp Bot, 2021, 72(22):7927-7941.DOI:10.1093/jxb/erab373. |
[55] | 翟中和, 王喜忠, 丁明孝. 细胞生物学[M]. 4版. 北京: 高等教育出版社, 2011. |
ZHAI Z H, WANG X Z, DING M X. Cell biology[M]. 4th ed. Beijing: Higher Education Press, 2011. | |
[56] | ZHOU C, WANG C S, LIU H B, et al. Identification and analysis of adenine N6-methylation sites in the rice genome[J]. Nat Plants, 2018, 4(8):554-563.DOI:10.1038/s41477-018-0214-x. |
[57] | ZHANG Q, LIANG Z, CUI X A, et al. N6-methyladenine DNA methylation in Japonica and Indica rice genomes and its association with gene expression,plant development,and stress responses[J]. Mol Plant, 2018, 11(12):1492-1508.DOI:10.1016/j.molp.2018.11.005. |
[58] | LIANG Z, ZHANG Q, JI C M, et al. Reorganization of the 3D chromatin architecture of rice genomes during heat stress[J]. BMC Biol, 2021, 19(1):53.DOI:10.1186/s12915-021-00996-4. |
[59] | 李占杰, 秦源. 染色质可及性与植物基因表达调控[J]. 植物学报, 2021, 56(6):664-675. |
LI Z J, QIN Y. Chromatin accessibility and the gene expression regulation in plants[J]. Chin Bull Bot, 2021, 56(6):664-675.DOI:10.11983/CBB21115. | |
[60] | JÉGU T, VELUCHAMY A, RAMIREZ-PRADO J S, et al. The Arabidopsis SWI/SNF protein BAF60 mediates seedling growth control by modulating DNA accessibility[J]. Genome Biol, 2017, 18(1):114.DOI:10.1186/s13059-017-1246-7. |
[61] | 王关林, 方宏筠. 植物基因工程[M]. 2版. 北京: 科学出版社, 2002. |
WANG G L, FANG H Y. Plant Genetic Engineering[M]. 2nd ed. Beijing: Science Press, 2002. | |
[62] | LONG H K, PRESCOTT S L, WYSOCKA J. Ever-changing landscapes: transcriptional enhancers in development and evolution[J]. Cell, 2016, 167(5):1170-1187.DOI:10.1016/j.cell.2016.09.018. |
[63] | CLARK R M, WAGLER T N, QUIJADA P, et al. A distant upstream enhancer at the maize domestication gene Tb1 has pleiotropic effects on plant and inflorescent architecture[J]. Nat Genet, 2006, 38(5):594-597.DOI:10.1038/ng1784. |
[64] | ZHU B, ZHANG W L, ZHANG T, et al. Genome-wide prediction and validation of intergenic enhancers in Arabidopsis using open chromatin signatures[J]. Plant Cell, 2015, 27(9):2415-2426.DOI:10.1105/tpc.15.00537. |
[65] | HUANG M K, ZHANG L, ZHOU L M, et al. Genomic features of open chromatin regions (OCRs) in wild soybean and their effects on gene expressions[J]. Genes, 2021, 12(5):640.DOI:10.3390/genes12050640. |
[66] | LIN X, LIN W G, KU Y S, et al. Analysis of soybean long non-coding RNAs reveals a subset of small peptide-coding transcripts[J]. Plant Physiol, 2019, 182(3):1359-1374.DOI:10.1104/pp.19.01324. |
[67] | MARAND A P, ZHANG T, ZHU B, et al. Towards genome-wide prediction and characterization of enhancers in plants[J]. Biochim Biophys Acta (BBA) Gene Regul Mech, 2017, 1860(1):131-139.DOI:10.1016/j.bbagrm.2016.06.006. |
[68] | SCHWOPE R, MAGRIS G, MICULAN M, et al. Open chromatin in grapevine marks candidate CREs and with other chromatin features correlates with gene expression[J]. Plant J, 2021, 107(6):1631-1647.DOI:10.1111/tpj.15404. |
[69] | CALO E, WYSOCKA J. Modification of enhancer chromatin: what,how,and why?[J]. Mol Cell, 2013, 49(5):825-837.DOI:10.1016/j.molcel.2013.01.038. |
[70] | LU Z F, MARAND A P, RICCI W A, et al. The prevalence,evolution and chromatin signatures of plant regulatory elements[J]. Nat Plants, 2019, 5(12):1250-1259.DOI:10.1038/s41477-019-0548-z. |
[71] | RICCI W A, LU Z F, JI L X, et al. Widespread long-range cis-regulatory elements in the maize genome[J]. Nat Plants, 2019, 5(12):1237-1249.DOI:10.1038/s41477-019-0547-0. |
[72] | YAN W H, CHEN D J, SCHUMACHER J, et al. Dynamic control of enhancer activity drives stage-specific gene expression during flower morphogenesis[J]. Nat Commun, 2019, 10:1705.DOI:10.1038/s41467-019-09513-2. |
[73] | MARAND A P, CHEN Z L, GALLAVOTTI A, et al. A cis-regulatory atlas in maize at single-cell resolution[J]. Cell, 2021, 184(11):3041-3055.e21.DOI:10.1016/j.cell.2021.04.014. |
[74] | CORCES M R, GRANJA J M, SHAMS S, et al. The chromatin accessibility landscape of primary human cancers[J]. Science, 2018, 362(6413):eaav1898.DOI:10.1126/science.aav1898. |
[75] | LIU C Y, WANG M Y, WEI X Y, et al. An ATAC-seq atlas of chromatin accessibility in mouse tissues[J]. Sci Data, 2019, 6:65.DOI:10.1038/s41597-019-0071-0. |
[1] | YANG Jiading, LIU Yujie, FENG Jianyuan, ZHANG Yuanlan. Nitrogen resorption machanism during leaf senescence in woody plants [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(5): 1-8. |
[2] | HOU Jing, MAO Jinyan, ZHAI Hui, WANG Jie, YIN Tongming. Application of CRISPR/Cas technique in woody plant improvement [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(6): 24-30. |
[3] | LI Dong, HUANG Li-li, HAN Su-fen*. 16S rDNA Sequence Analysis of 23 Rhizobium Strains Isolated from Leguminosae Woody Plants [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2007, 31(06): 117-120. |
[4] | PENG Fang-ren1, GUO Hong-yan1, YANG Yu-zhen1,2, GUO Yan-qing1. Progresses of Research on Ammonium Assimilation in Woody Plants [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2006, 30(06): 117-122. |
[5] | GUO Hong-yan, GUO Yan-qing, PENG Fang-ren*. The Research Progresses on the Mechanism of Metabolization of Vegetative Storage Protein in Woody Plants [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2006, 30(04): 123-128. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||