
Forest fire image recognition based on deep learning multi-target detection technology
HE Nailei, ZHANG Jinsheng, LIN Wenshu
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (3) : 207-218.
Forest fire image recognition based on deep learning multi-target detection technology
【Objective】 Forest fires not only cause serious damage to the natural environment of forests and affect their ecosystem functions, but also cause harm and losses to human society. Based on the use of a deep learning process to identify forest fire images, it is possible to efficiently and accurately identify images showing the early stages of forest fires, thereby enabling prompt action to reduce the harm caused by forest fires to forest ecosystems and human society. 【Method】 With the implementation of the single shot multibox detector (SSD) target detection algorithm based on the TensorFlow framework, the network structure was optimized according to the characteristics of forest fires, and a model was developed that could identify flame features in forest fire images. First, the acquired images were normalized and then the “Imgaug” image data enhancement library was used to perform data enhancement on forest fire images and build a forest fire dataset, followed by the building of a deep learning operating environment and the setting of hyper-parameters. The recognition of forest fire features in the image by the model was obtained by testing the data in the test set. By visualizing both the Loss curve and the precision-recall (P-R) curve, the recognition accuracy of the model for forest fires was ultimately obtained.【Result】 With an increase in the number of iterations, the loss value gradually decreased from 35.31 in the early stage of training, and stabilized at about 7.10 when the training reached 20 000 iterations. At this point, the recognition accuracy of the model reached a high level. The recognition confidence of fire features was greater than 0.9. A test set was built based on the forest fire images in the fire luminosity airborne-based machine learning evaluation (FLAME) public data set. After testing and evaluation, the model achieved a mean average precision for forest fire characteristics of 97.40%, the missed detection rate was 0.03, and the average detection time of the test image was only 0.07 s. Compared with the faster- region-based convolutional neural network (Faster R-CNN) model using the same data set, the SSD achieved a better detection speed and recognition accuracy. 【Conclusion】 The SSD algorithm for forest fire feature recognition proposed here can take into account the detection speed and precision, and can quickly identify images in the early stage of a forest fire with a low missed detection rate, which will enable forest staff to deal with the fire in time, providing a technical reference for the early prevention of forest fires.
deep learning / forest fire / image identification / object detection / single shot multibox detector (SSD) algorithm
[1] |
国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2020: 259.
National Bureau of Statistics. China Statistical Yearbook[M]. Beijing: China Statistics Press, 2020: 259.
|
[2] |
李宾. 面向森林火灾的烟雾检测系统的设计与开发[D]. 青岛: 山东科技大学, 2018.
|
[3] |
|
[4] |
付迎春, 徐颂军, 陈蜜. 基于MODIS影像梯度的林火边界提取方法[J]. 林业科学, 2008, 44(7):56-61.
|
[5] |
杨光, 宁吉彬, 舒立福, 等. 黑龙江大兴安岭卫星热点预报森林火灾准确性研究[J]. 北京林业大学学报, 2017, 39(12):1-9.
|
[6] |
单会见. 基于无人机的林火识别和定位算法研究[D]. 杭州: 浙江农林大学, 2019.
|
[7] |
马越豪, 卢晓, 董佩, 等. 基于图像特征的无人机火灾检测[J]. 消防科学与技术, 2019, 38(5): 658-660.
|
[8] |
孙鹏. 基于改进SSD模型的小目标检测研究[D]. 南京: 南京邮电大学, 2021.
|
[9] |
王飞. 基于深度学习的森林火灾识别检测系统的研究与实现[D]. 成都: 电子科技大学, 2020.
|
[10] |
刘青, 刘志国, 刘守全, 等. 基于改进YOLOv3的无人机林火监测系统设计与实现[J]. 消防科学与技术, 2021, 40(4): 557-561.
|
[11] |
傅天驹. 基于深度学习的林火图像识别算法及实现[D]. 北京: 北京林业大学, 2016.
|
[12] |
陈燕红. 基于卷积神经网络的无人机森林火灾检测研究[D]. 西安: 西安理工大学, 2019.
|
[13] |
周浪, 樊坤, 瞿华, 等. 基于Sparse-DenseNet模型的森林火灾识别研究[J]. 北京林业大学学报, 2020, 42(10): 36-44.
|
[14] |
马茂平. 基于特征显著性增强的改进SSD算法研究[D]. 成都: 西南交通大学, 2021.
|
[15] |
|
[16] |
李青援, 邓赵红, 罗晓清, 等. 注意力与跨尺度融合的SSD目标检测算法[J]. 计算机科学与探索, 2022, 16(11):2575-2586.
|
[17] |
|
[18] |
刘嘉政, 王雪峰, 王甜. 基于深度学习的树种图像自动识别[J]. 南京林业大学学报(自然科学版), 2020, 44(1):138-144.
|
[19] |
齐浩. 基于SSD的目标检测算法及其应用研究[D]. 邯郸: 河北工程大学, 2021.
|
[20] |
张倩如, 王云飞, 吕帅朝, 等. 基于改进GhostNet的小麦秸秆表皮结构完整性分类方法[J]. 南京农业大学学报, 2022, 45(4):788-798.
|
[21] |
缪伟志, 陆兆纳, 王俊龙, 等. 基于视觉的火灾检测研究[J]. 森林工程, 2022, 38(1):86-92,100.
|
[22] |
|
[23] |
|
[24] |
|
[25] |
张坚鑫, 郭四稳, 张国兰, 等. 基于多尺度特征融合的火灾检测模型[J]. 郑州大学学报(工学版), 2021, 42(5):13-18.
|
[26] |
张勇. 基于改进型SSD的火焰及烟雾检测系统的设计与实现[D]. 长沙: 湖南师范大学, 2021.
|
[27] |
张倩, 周平平, 王公堂, 等. 基于合成图像的Faster R-CNN森林火灾烟雾检测[J]. 山东师范大学学报(自然科学版), 2019, 34(2):180-185.
|
[28] |
陈琼, 谢家亮. 基于自适应采样的不平衡分类方法[J]. 华南理工大学学报(自然科学版), 2022, 50(4):26-34,45.
|
[29] |
南玉龙, 张慧春, 郑加强, 等. 深度学习在林业中的应用[J]. 世界林业研究, 2021, 34(5): 87-90.
|
[30] |
高桂雨, 李丁祎, 赵娟娟, 等. 基于目标检测SSD算法的森林火灾监测模型研究[J]. 电脑知识与技术, 2022, 18(2):13-14,23.
|
/
〈 |
|
〉 |