Variation and correlation analysis of leaf traits of three Acer species in different growth periods in the Xiaoxing’an Mountains of northeast China

PENG Zhongtao, GUO Jiaxing, WANG Yixuan, WANG Lei, JIN Guangze, LIU Zhili

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (1) : 131-139.

PDF(4018 KB)
PDF(4018 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (1) : 131-139. DOI: 10.12302/j.issn.1000-2006.202205036

Variation and correlation analysis of leaf traits of three Acer species in different growth periods in the Xiaoxing’an Mountains of northeast China

Author information +
History +

Abstract

【Objective】 Leaf traits play important roles in plant resource acquisition and photosynthetic capacity. Therefore, plants can adapt to different leaf-growth periods by adjusting their leaf traits. 【Method】Acer ukurunduense, A. tegmentosum and A. pictum subsp. mono, three typical Acer species in the Xiaoxing’an Mountains of northeast China were selected as the objects of the study. During the three growth periods of leaf expansion (early June), leaf stabilization (mid-July), and leaf senescence (early September), the specific leaf area, leaf dry matter content, chlorophyll, and leaf thickness were measured. Additionally, the growth dynamics of the leaf traits and the correlations between traits were analyzed. 【Result】 Significant differences existed in leaf traits among different Acer species in different growth periods, and the leaf thickness in the leaf expansion period and leaf dry matter content in the leaf stabilization period were significantly higher than the other two periods. The correlation between leaf traits varied significantly with different growth periods. Three Acer species exhibited the “quick investment-return” strategy in the leaf expansion period and the “slow investment-return” strategy in the leaf stabilization and leaf senescence periods. Leaf traits and their correlations were significantly different at the species level. 【Conclusion】Plants adapt to different growth periods through leaf trait variations and different combinations of leaf traits, and finally form various survival strategies.

Key words

Acer species / specific leaf area / leaf dry matter content / chlorophyll / leaf thickness / survival strategy / Xiaoxing’an Mountains

Cite this article

Download Citations
PENG Zhongtao , GUO Jiaxing , WANG Yixuan , et al . Variation and correlation analysis of leaf traits of three Acer species in different growth periods in the Xiaoxing’an Mountains of northeast China[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(1): 131-139 https://doi.org/10.12302/j.issn.1000-2006.202205036

References

[1]
WRIGHT I J, REICH P B, CORNELISSEN J H C, et al. Assessing the generality of global leaf trait relationships[J]. New Phytol, 2005, 166(2):485-496.DOI: 10.1111/j.1469-8137.2005.01349.x.
[2]
FAJARDO A, SIEFERT A. Phenological variation of leaf functional traits within species[J]. Oecologia, 2016, 180(4):951-959.DOI: 10.1007/s00442-016-3545-1.
[3]
HE N P, LI Y, LIU C C, et al. Plant trait networks:improved resolution of the dimensionality of adaptation[J]. Trends Ecol Evol, 2020, 35(10):908-918.DOI: 10.1016/j.tree.2020.06.003.
[4]
OSNAS J L D, LICHSTEIN J W, REICH P B, et al. Global leaf trait relationships:mass,area,and the leaf economics spectrum[J]. Science, 2013, 340(6133):741-744.DOI: 10.1126/science.1231574.
[5]
刘晓娟, 马克平. 植物功能性状研究进展[J]. 中国科学:生命科学, 2015, 45(4):325-339.
LIU X J, MA K P. Plant functional traits: concepts,applications and future directions[J]. Sci Sin (Vitae), 2015, 45(4):325-339.DOI: 10.1360/N052014-00244.
[6]
CUI E Q, WENG E S, YAN E R, et al. Robust leaf trait relationships across species under global environmental changes[J]. Nat Commun, 2020, 11(1):2999.DOI: 10.1038/s41467-020-16839-9.
[7]
FUNK J L, LARSON J E, VOSE G. Leaf traits and performance vary with plant age and water availability in Artemisia californica[J]. Ann Bot, 2021, 127(4):495-503.DOI: 10.1093/aob/mcaa106.
[8]
JANKOWSKI A, WYKA T P, ZYTKOWIAK R, et al. Cold adaptation drives variability in needle structure and anatomy in Pinus sylvestris L.along a 1 900 km temperate-boreal transect[J]. Funct Ecol, 2017, 31(12):2212-2223.DOI: 10.1111/1365-2435.12946.
[9]
张林, 罗天祥. 植物叶寿命及其相关叶性状的生态学研究进展[J]. 植物生态学报, 2004, 28(6):844-852.
ZHANG L, LUO T X. Advances in ecological studies on leaf lifespan and associated leaf traits[J]. Acta Phytoecol Sin, 2004, 28(6):844-852.DOI:10.1752/cjpe.2004.0110.
[10]
POORTER L. Leaf traits show different relationships with shade tolerance in moist versus dry tropical forests[J]. New Phytol, 2009, 181(4):890-900.DOI: 10.1111/j.1469-8137.2008.02715.x.
[11]
BASNETT S, DEVY S M. Phenology determines leaf functional traits across Rhododendron species in the Sikkim Himalaya[J]. Alp Bot, 2021, 131(1):63-72.DOI: 10.1007/s00035-020-00244-5.
[12]
LI S J, WANG H, GOU W, et al. Leaf functional traits of dominant desert plants in the Hexi Corridor,northwestern China:trade-off relationships and adversity strategies[J]. Glob Ecol Conserv, 2021, 28:e01666.DOI: 10.1016/j.gecco.2021.e01666.
[13]
CONEVA V, CHITWOOD D H. Genetic and developmental basis for increased leaf thickness in the Arabidopsis Cvi ecotype[J]. Front Plant Sci, 2018, 9:322.DOI: 10.3389/fpls.2018.00322.
[14]
RICHARDSON A D, DUIGAN S P, BERLYN G P. An evaluation of noninvasive methods to estimate foliar chlorophyll content[J]. New Phytol, 2002, 153(1):185-194.DOI: 10.1046/j.0028-646X.2001.00289.x.
[15]
WU J, ALBERT L P, LOPES A P, et al. Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests[J]. Science, 2016, 351(6276):972-976.DOI: 10.1126/science.aad5068.
[16]
BURNETT A C, SERBIN S P, LAMOUR J, et al. Seasonal trends in photosynthesis and leaf traits in scarlet oak[J]. Tree Physiol, 2021, 41(8):1413-1424.DOI: 10.1093/treephys/tpab015.
[17]
LIU Y Z, LI G Y, WU X W, et al. Linkage between species traits and plant phenology in an alpine meadow[J]. Oecologia, 2021, 195(2):409-419.DOI: 10.1007/s00442-020-04846-y.
[18]
MOORE T E, JONES C S, CHONG C, et al. Impact of rainfall seasonality on intraspecific trait variation in a shrub from a Mediterranean climate[J]. Funct Ecol, 2020, 34(4):865-876.DOI: 10.1111/1365-2435.13533.
[19]
CHAVANA-BRYANT C, MALHI Y, WU J, et al. Leaf aging of Amazonian canopy trees as revealed by spectral and physiochemical measurements[J]. New Phytol, 2017, 214(3):1049-1063.DOI: 10.1111/nph.13853.
[20]
HUANG L, KOUBEK T, WEISER M, et al. Environmental drivers and phylogenetic constraints of growth phenologies across a large set of herbaceous species[J]. J Ecol, 2018, 106(4):1621-1633.DOI: 10.1111/1365-2745.12927.
[21]
FLYNN D F B, WOLKOVICH E M. Temperature and photoperiod drive spring phenology across all species in a temperate forest community[J]. New Phytol, 2018, 219(4):1353-1362.DOI: 10.1111/nph.15232.
[22]
LIU Z L, JIANG F, LI F R, et al. Coordination of intra and inter-species leaf traits according to leaf phenology and plant age for three temperate broadleaf species with different shade tolerances[J]. For Ecol Manag, 2019, 434:63-75.DOI: 10.1016/j.foreco.2018.12.008.
[23]
MCKOWN A D, GUY R D, AZAM M S, et al. Seasonality and phenology alter functional leaf traits[J]. Oecologia, 2013, 172(3):653-665.DOI: 10.1007/s00442-012-2531-5.
[24]
CROFT H, CHEN J M, LUO X Z, et al. Leaf chlorophyll content as a proxy for leaf photosynthetic capacity[J]. Glob Change Biol, 2017, 23(9):3513-3524.DOI: 10.1111/gcb.13599.
[25]
WRIGHT I J, REICH P B, WESTOBY M, et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428(6985):821-827.DOI: 10.1038/nature02403.
[26]
FAJARDO A, MORA J P, ROBERT E. Corner’s rules pass the test of time:little effect of phenology on leaf-shoot and other scaling relationships[J]. Ann Bot, 2020, 126(7): 1129-1139.
[27]
徐丽娜, 金光泽. 小兴安岭凉水典型阔叶红松林动态监测样地:物种组成与群落结构[J]. 生物多样性, 2012, 20(4):470-481.
XU L N, JIN G Z. Species composition and community structure of a typical mixed broad-leaved-Korean pine (Pinus koraiensis) forest plot in Liangshui Nature Reserve,northeast China[J]. Biodivers Sci, 2012, 20(4):470-481.DOI: 10.3724/SP.J.1003.2012.12233.
[28]
LIU Z L, CHEN J M, JIN G Z, et al. Estimating seasonal variations of leaf area index using litterfall collection and optical methods in four mixed evergreen-deciduous forests[J]. Agric For Meteorol, 2015, 209/210:36-48.DOI: 10.1016/j.agrformet.2015.04.025.
[29]
RASBAND W S, IMAGE J U S. National institutes of health, bethesda[R/OL]. Maryland, USA: National Institutes of Health, 1997. https://imagej.nih.gov/ij/.
[30]
R Core Team. R: a language and environment for statistical computing[Z]. The R Foundation for Statistical Computing, Vienna, Austria, 2017. http://www.R-project.org/.
[31]
BASNETT S, NAGARAJU S K, RAVIKANTH G, et al. Influence of phylogeny and abiotic factors varies across early and late reproductive phenology of Himalayan Rhododendrons[J]. Ecosphere, 2019, 10(1):e02581.DOI: 10.1002/ecs2.2581.
[32]
ALBERT L P, WU J, PROHASKA N, et al. Age-dependent leaf physiology and consequences for crown-scale carbon uptake during the dry season in an Amazon evergreen forest[J]. New Phytol, 2018, 219(3):870-884.DOI: 10.1111/nph.15056.
[33]
HALLIK L, NIINEMETS Ü, KULL O. Photosynthetic acclimation to light in woody and herbaceous species:a comparison of leaf structure,pigment content and chlorophyll fluorescence characteristics measured in the field[J]. Plant Biol, 2012, 14(1):88-99.DOI: 10.1111/j.1438-8677.2011.00472.x.
[34]
EVANS J R, POORTER H. Photosynthetic acclimation of plants to growth irradiance:the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain[J]. Plant Cell Environ, 2001, 24(8):755-767.DOI: 10.1046/j.1365-3040.2001.00724.x.
[35]
LEISHMAN M R, HASLEHURST T, ARES A, et al. Leaf trait relationships of native and invasive plants:community- and global-scale comparisons[J]. New Phytol, 2007, 176(3):635-643.DOI: 10.1111/j.1469-8137.2007.02189.x.
[36]
DONG N, PRENTICE I C, WRIGHT I J, et al. Components of leaf-trait variation along environmental gradients[J]. New Phytol, 2020, 228(1):82-94.DOI: 10.1111/nph.16558.
[37]
金明月, 姜峰, 金光泽, 等. 不同年龄白桦比叶面积的生长阶段变异及冠层差异[J]. 林业科学, 2018, 54(9):18-26.
JIN M Y, JIANG F, JIN G Z, et al. Variations of specific leaf area in different growth periods and canopy positions of Betula platyphylla at different ages[J]. Sci Silvae Sin, 2018, 54(9):18-26.DOI: 10.11707/j.1001-7488.20180903.
[38]
MARENCO R A, ANTEZANA-VERA S A, NASCIMENTO H C S. Relationship between specific leaf area,leaf thickness,leaf water content and SPAD-502 readings in six Amazonian tree species[J]. Photosynthetica, 2009, 47(2):184-190.DOI: 10.1007/s11099-009-0031-6.
[39]
盘远方, 陈兴彬, 姜勇, 等. 桂林岩溶石山灌丛植物叶功能性状和土壤因子对坡向的响应[J]. 生态学报, 2018, 38(5):1581-1589.
PAN Y F, CHEN X B, JIANG Y, et al. Changes in leaf functional traits and soil environmental factors in response to slope gradient in Karst hills of Guilin[J]. Acta Ecol Sin, 2018, 38(5):1581-1589.DOI: 10.5846/stxb201701210173.
[40]
ANDEREGG L D L, LOY X, MARKHAM I P, et al. Aridity drives coordinated trait shifts but not decreased trait variance across the geographic range of eight Australian trees[J]. New Phytol, 2021, 229(3):1375-1387.DOI: 10.1111/nph.16795.
[41]
GRIFFITH D M, QUIGLEY K M, ANDERSON T M. Leaf thickness controls variation in leaf mass per area (LMA) among grazing-adapted grasses in Serengeti[J]. Oecologia, 2016, 181(4):1035-1040.DOI: 10.1007/s00442-016-3632-3.
[42]
LI L, MCCORMACK M L, MA C G, et al. Leaf economics and hydraulic traits are decoupled in five species-rich tropical-subtropical forests[J]. Ecol Lett, 2015, 18(9):899-906.DOI: 10.1111/ele.12466.
[43]
MARÉCHAUX I, SAINT-ANDRÉ L, BARTLETT M K, et al. Leaf drought tolerance cannot be inferred from classic leaf traits in a tropical rainforest[J]. J Ecol, 2020, 108(3):1030-1045.DOI: 10.1111/1365-2745.13321.
[44]
WILSON P J, THOMPSON K, HODGSON J G. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies[J]. New Phytol, 1999, 143(1):155-162.DOI: 10.1046/j.1469-8137.1999.00427.x.
[45]
QI J H, FAN Z X, FU P L, et al. Differential determinants of growth rates in subtropical evergreen and deciduous juvenile trees:carbon gain,hydraulics and nutrient-use efficiencies[J]. Tree Physiol, 2021, 41(1):12-23.DOI: 10.1093/treephys/tpaa131.
[46]
田俊霞, 魏丽萍, 何念鹏, 等. 温带针阔混交林叶片性状随树冠垂直高度的变化规律[J]. 生态学报, 2018, 38(23):8383-8391.
TIAN J X, WEI L P, HE N P, et al. Vertical variation of leaf functional traits in temperate forest canopies in China[J]. Acta Ecol Sin, 2018, 38(23):8383-8391.DOI: 10.5846/stxb201801020006.
[47]
朱弘, 朱淑霞, 李涌福, 等. 尾叶樱桃天然种群叶表型性状变异研究[J]. 植物生态学报, 2018, 42(12):1168-1178.
ZHU H, ZHU S X, LI Y F, et al. Leaf phenotypic variation in natural populations of Cerasus dielsiana[J]. Chin J Plant Ecol, 2018, 42(12):1168-1178.DOI: 10.17521/cjpe.2018.0196.
[48]
MARTINEZ K A, FRIDLEY J D. Acclimation of leaf traits in seasonal light environments:are non-native species more plastic?[J]. J Ecol, 2018, 106(5):2019-2030.DOI: 10.1111/1365-2745.12952.
[49]
PÉREZ-HARGUINDEGUY N, DÍAZ S, GARNIER E, et al. New handbook for standardised measurement of plant functional traits worldwide[J]. Aust J Bot, 2013, 61(3):167.DOI: 10.1071/bt12225.
[50]
CUBINO J P, BIURRUN I, BONARI G, et al. The leaf economic and plant size spectra of European forest understory vegetation[J]. Ecography, 2021, 44(9):1311-1324.DOI: 10.1111/ecog.05598.
[51]
SAVAGE J A. It’s all about timing—Or is it?Exploring the potential connection between phloem physiology and whole plant phenology[J]. Am J Bot, 2020, 107(6):848-851.DOI: 10.1002/ajb2.1480.
[52]
DAYRELL R L C, ARRUDA A J, PIERCE S, et al. Ontogenetic shifts in plant ecological strategies[J]. Funct Ecol, 2018, 32(12):2730-2741.DOI: 10.1111/1365-2435.13221.
[53]
BLOOMFIELD K J, CERNUSAK L A, EAMUS D, et al. A continental-scale assessment of variability in leaf traits:within species,across sites and between seasons[J]. Funct Ecol, 2018, 32(6):1492-1506.DOI: 10.1111/1365-2435.13097.
PDF(4018 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/