JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (3): 87-96.doi: 10.12302/j.issn.1000-2006.202205037
Previous Articles Next Articles
ZHANG Yunqi1(), DONG Ningguang1, HAO Yanbin1, CHEN Yonghao1, ZHANG Junpei2,*(
), HOU Zhixia3, SU Shuchai3, WU Jiaqing1, QI Jianxun1,*(
)
Received:
2022-05-21
Revised:
2022-07-09
Online:
2023-05-30
Published:
2023-05-25
Contact:
ZHANG Junpei,QI Jianxun
E-mail:zhyq1985@bjfu.edu.cn;zhangjunpei@caf.ac.cn;qijx@263.net
CLC Number:
ZHANG Yunqi, DONG Ningguang, HAO Yanbin, CHEN Yonghao, ZHANG Junpei, HOU Zhixia, SU Shuchai, WU Jiaqing, QI Jianxun. Nuts’ phenotypic diversity analysis and character evaluation of 109 high-yield walnut individual trees[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(3): 87-96.
Table 1
The number and name of 109 walnut germplasm resources"
编码 code | 品系编号 genotype | 编码 code | 品系编号 genotype | 编码 code | 品系编号 genotype | 编码 code | 品系编号 genotype | 编码 code | 品系编号 genotype | 编码 code | 品系编号 genotype |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | A001 | 20 | A248 | 39 | D6N1 | 58 | W20 | 77 | W50 | 96 | XJ39 |
2 | A002 | 21 | A250 | 40 | D8 | 59 | W21 | 78 | W57 | 97 | XJ40 |
3 | A013 | 22 | A253 | 41 | D15 | 60 | W23 | 79 | E030 | 98 | XJ45 |
4 | A051 | 23 | A255 | 42 | D23 | 61 | W24 | 80 | E032 | 99 | XJ49 |
5 | A068 | 24 | A265 | 43 | D30 | 62 | W27 | 81 | E042 | 100 | XJ57 |
6 | A082 | 25 | A266 | 44 | D33B1 | 63 | W29 | 82 | E042B53 | 101 | XJ59 |
7 | A091 | 26 | A271 | 45 | D35 | 64 | W30 | 83 | B17 | 102 | 075X1N1 |
8 | A097 | 27 | A293 | 46 | W2 | 65 | W31 | 84 | B26 | 103 | 175D2B1 |
9 | A110 | 28 | A298 | 47 | W4 | 66 | W33 | 85 | B99 | 104 | Z1 |
10 | A123 | 29 | A336 | 48 | W6 | 67 | W34 | 86 | B112 | 105 | Z2 |
11 | A125 | 30 | A364 | 49 | W8 | 68 | W36 | 87 | K1 | 106 | Z3 |
12 | A145 | 31 | A385 | 50 | W9 | 69 | W37 | 88 | K2 | 107 | Z4 |
13 | A171 | 32 | A389 | 51 | W12 | 70 | W38 | 89 | K1L4 | 108 | Z5 |
14 | A201 | 33 | A389B1 | 52 | W13 | 71 | W40 | 90 | HF | 109 | ZY |
15 | A205 | 34 | A390 | 53 | W14 | 72 | W42 | 91 | O13N1 | ||
16 | A219 | 35 | A393N2 | 54 | W15 | 73 | W43 | 92 | X1N1 | ||
17 | A212 | 36 | DY | 55 | W17 | 74 | W45 | 93 | XJ12 | ||
18 | A215B1 | 37 | D2-2 | 56 | W18 | 75 | W46 | 94 | XJ14 | ||
19 | A241 | 38 | D2-3 | 57 | W19 | 76 | W47 | 95 | XJ16 |
Table 2
Genetic diversity analysis of phenotypic traits of 109 walnut germplasm resources"
表型性状 phenotypic traits | 最大值 max. | 最小值 min. | 极差 range | 均值 mean | SD | CV/% | 遗传多样性 指数H' | F |
---|---|---|---|---|---|---|---|---|
L/mm | 46.95 | 29.76 | 17.19 | 39.20 | 3.32 | 8.47 | 2.925 | 69.092** |
W/mm | 40.68 | 25.03 | 15.65 | 33.30 | 2.53 | 7.59 | 2.871 | 63.512** |
T/mm | 42.02 | 26.65 | 15.37 | 34.05 | 2.86 | 8.39 | 2.980 | 77.350** |
TS/mm | 2.46 | 0.72 | 1.74 | 1.33 | 0.30 | 22.45 | 2.978 | 123.899** |
mN/g | 22.33 | 6.96 | 15.37 | 13.45 | 2.52 | 18.77 | 2.905 | 60.490** |
mK/g | 12.37 | 3.82 | 8.55 | 7.52 | 1.36 | 18.01 | 2.869 | 39.752** |
mD/g | 0.48 | 0.15 | 0.34 | 0.28 | 0.07 | 23.86 | 2.924 | 16.434** |
mS/g | 10.77 | 2.81 | 7.96 | 5.64 | 1.41 | 25.00 | 2.880 | 105.591** |
Ra | 1.01 | 0.73 | 0.27 | 0.85 | 0.06 | 7.01 | 3.023 | 75.112** |
INSI | 1.03 | 0.74 | 0.29 | 0.86 | 0.06 | 7.06 | 2.992 | 86.926** |
E | 1.36 | 0.96 | 0.40 | 1.16 | 0.09 | 7.60 | 2.952 | 84.123** |
Da/mm | 42.29 | 28.22 | 14.08 | 35.52 | 2.60 | 7.32 | 2.954 | 70.447** |
Dg/mm | 42.17 | 28.14 | 14.03 | 35.39 | 2.59 | 7.33 | 2.953 | 70.795** |
φ | 1.02 | 0.82 | 0.20 | 0.91 | 0.04 | 4.70 | 2.961 | 87.233** |
S/cm2 | 55.97 | 24.88 | 31.09 | 39.60 | 5.71 | 14.41 | 2.953 | 68.230** |
V/cm3 | 39.53 | 11.69 | 27.84 | 23.67 | 5.05 | 21.34 | 2.979 | 65.726** |
IPK/% | 68.62 | 41.10 | 27.52 | 56.08 | 4.51 | 8.04 | 2.915 | 63.107** |
IKCV/cm-3 | 4.75 | 1.29 | 3.46 | 2.49 | 0.60 | 24.05 | 2.849 | 72.936** |
Table 3
Correlation analysis of phenotypic traits of 109 walnut germplasm resources"
表型性状 phenotypic trait | L | W | T | TS | mN | mK | mD | mS | Ra |
---|---|---|---|---|---|---|---|---|---|
L | 1 | ||||||||
W | 0.630** | 1 | |||||||
T | 0.601** | 0.913** | 1 | ||||||
TS | 0.139 | 0.174 | 0.122 | 1 | |||||
mN | 0.628** | 0.844** | 0.821** | 0.507** | 1 | ||||
mK | 0.673** | 0.875** | 0.853** | 0.177 | 0.902** | 1 | |||
mD | 0.391** | 0.500** | 0.418** | -0.009 | 0.412** | 0.469** | 1 | ||
mS | 0.459** | 0.646** | 0.629** | 0.737** | 0.904** | 0.630** | 0.239* | 1 | |
Ra | -0.542** | 0.307** | 0.245* | 0.034 | 0.144 | 0.116 | 0.046 | 0.144 | 1 |
INSI | -0.519** | 0.307** | 0.346** | 0.013 | 0.176 | 0.151 | 0.026 | 0.170 | 0.969** |
E | 0.468** | -0.290** | -0.422** | 0.029 | -0.184 | -0.175 | -0.013 | -0.161 | -0.881** |
Da | 0.851** | 0.927** | 0.919** | 0.160 | -0.842** | 0.883** | 0.482** | 0.636** | -0.042 |
Dg | 0.833** | 0.937** | 0.929** | 0.158 | 0.846** | 0.888** | 0.484** | 0.638** | -0.01 |
φ | -0.519** | 0.307** | 0.346** | 0.011 | 0.175 | 0.151 | 0.028 | 0.167 | 0.969** |
S | 0.826** | 0.937** | 0.932** | 0.160 | 0.850** | 0.887** | 0.489** | 0.646** | -0.002 |
V | 0.817** | 0.935** | 0.932** | 0.163 | 0.852** | 0.885** | 0.492** | 0.651** | 0.007 |
IPK | 0.080 | 0.052 | 0.043 | -0.755** | -0.252** | 0.181 | 0.141 | -0.632** | -0.058 |
IKCV | -0.789** | -0.873** | -0.862** | -0.396** | -0.874** | -0.789** | -0.389** | -0.788** | 0.018 |
INSI | 1 | ||||||||
E | -0.968** | 1 | |||||||
Da | 0.005 | -0.049 | 1 | ||||||
Dg | 0.037 | -0.082 | 0.999** | 1 | |||||
φ | 1.000** | -0.969** | 0.005 | 0.038 | 1 | ||||
S | 0.047 | -0.091 | 0.998** | 0.999** | 0.047 | 1 | |||
V | 0.057 | -0.101 | 0.993** | 0.994** | 0.057 | 0.999** | 1 | ||
IPK | -0.061 | 0.031 | 0.067 | 0.068 | -0.056 | 0.056 | 0.044 | 1 | |
IKCV | -0.025 | 0.057 | -0.935** | -0.935** | -0.024 | -0.927** | -0.916** | 0.227* | 1 |
Table 4
Principal component analysis of phenotypictraits of 109 walnut germplasm resources"
表型性状 phenotypic traits | PC1 | PC2 | PC3 |
---|---|---|---|
L | 0.758 | -0.640 | 0.077 |
W | 0.951 | 0.167 | 0.138 |
T | 0.936 | 0.205 | 0.156 |
TS | 0.299 | 0.019 | -0.880 |
mN | 0.930 | 0.064 | -0.248 |
mK | 0.914 | 0.020 | 0.162 |
mD | 0.504 | -0.055 | 0.252 |
mS | 0.762 | 0.099 | -0.612 |
Ra | 0.098 | 0.965 | 0.036 |
INSI | 0.141 | 0.988 | 0.054 |
E | -0.170 | -0.951 | -0.095 |
Da | 0.975 | -0.144 | 0.135 |
Dg | 0.978 | -0.111 | 0.140 |
φ | 0.141 | 0.988 | 0.058 |
S | 0.980 | -0.101 | 0.134 |
V | 0.978 | -0.091 | 0.128 |
IPK | -0.065 | -0.100 | 0.936 |
IKCV | -0.949 | 0.106 | 0.159 |
特征值eigen value | 9.790 | 4.356 | 2.341 |
贡献率/% contributive percentage | 54.390 | 24.203 | 13.003 |
累计贡献率/% total percentage | 54.390 | 78.593 | 91.596 |
Table 5
Ranking list of integrated score of nut phenotypic traits"
品系编号 genotype | 综合 评价值 D | 排名 rank | 品系编号 genotype | 综合 评价值 D | 排名 rank | 品系编号 genotype | 综合 评价值 D | 排名 rank | 品系编号 genotype | 综合 评价值 D | 排名 rank |
---|---|---|---|---|---|---|---|---|---|---|---|
DY | 0.807 | 1 | D6N1 | 0.516 | 29 | W57 | 0.446 | 57 | Z2 | 0.386 | 85 |
XJ45 | 0.716 | 2 | A02 | 0.515 | 30 | B17 | 0.445 | 58 | W13 | 0.385 | 86 |
A265 | 0.712 | 3 | XJ40 | 0.509 | 31 | B26 | 0.444 | 59 | W36 | 0.384 | 87 |
B99 | 0.673 | 4 | A219 | 0.506 | 32 | A13 | 0.443 | 60 | A271 | 0.381 | 88 |
D30 | 0.646 | 5 | XJ16 | 0.500 | 33 | W14 | 0.439 | 61 | E032 | 0.376 | 89 |
A068 | 0.629 | 6 | K2 | 0.499 | 34 | A097 | 0.438 | 62 | W6 | 0.361 | 90 |
E030 | 0.617 | 7 | W47 | 0.498 | 35 | W19 | 0.428 | 63 | W45 | 0.356 | 91 |
A082 | 0.604 | 8 | W17 | 0.498 | 36 | D8 | 0.426 | 64 | D15 | 0.354 | 92 |
XJ59 | 0.597 | 9 | A241 | 0.494 | 37 | O13N1 | 0.422 | 65 | A298 | 0.347 | 93 |
W27 | 0.587 | 10 | A266 | 0.492 | 38 | W38 | 0.419 | 66 | W9 | 0.342 | 94 |
175D2B1 | 0.584 | 11 | A253 | 0.489 | 39 | E042B53 | 0.419 | 67 | A255 | 0.338 | 95 |
XJ57 | 0.582 | 12 | W18 | 0.488 | 40 | B112 | 0.415 | 68 | A205 | 0.337 | 96 |
A123 | 0.576 | 13 | XJ12 | 0.487 | 41 | D23 | 0.415 | 69 | Z3 | 0.335 | 97 |
A389B1 | 0.573 | 14 | A201 | 0.482 | 42 | W2 | 0.414 | 70 | A110 | 0.328 | 98 |
W23 | 0.567 | 15 | A336 | 0.478 | 43 | Z1 | 0.409 | 71 | D33B1 | 0.322 | 99 |
A393N2 | 0.567 | 16 | Z5 | 0.476 | 44 | W37 | 0.409 | 72 | A215B1 | 0.322 | 100 |
W12 | 0.556 | 17 | A125 | 0.473 | 45 | A01 | 0.408 | 73 | E042 | 0.317 | 101 |
W4 | 0.555 | 18 | XJ39 | 0.473 | 46 | W24 | 0.406 | 74 | W31 | 0.313 | 102 |
ZY | 0.546 | 19 | W30 | 0.467 | 47 | A390 | 0.406 | 75 | W20 | 0.312 | 103 |
W21 | 0.543 | 20 | W15 | 0.466 | 48 | A385 | 0.404 | 76 | A145 | 0.309 | 104 |
A248 | 0.542 | 21 | W33 | 0.465 | 49 | X1N1 | 0.403 | 77 | W43 | 0.272 | 105 |
A364 | 0.541 | 22 | W50 | 0.462 | 50 | A389 | 0.401 | 78 | D35 | 0.268 | 106 |
K1 | 0.540 | 23 | W29 | 0.461 | 51 | W40 | 0.399 | 79 | 075X1N1 | 0.219 | 107 |
A091 | 0.531 | 24 | W42 | 0.458 | 52 | XJ14 | 0.399 | 80 | D2-2 | 0.179 | 108 |
HF | 0.524 | 25 | W8 | 0.451 | 53 | A171 | 0.396 | 81 | D2-3 | 0.122 | 109 |
Z4 | 0.523 | 26 | W46 | 0.450 | 54 | A293 | 0.394 | 82 | |||
XJ49 | 0.521 | 27 | A51 | 0.446 | 55 | A250 | 0.394 | 83 | |||
K1L4 | 0.517 | 28 | W34 | 0.446 | 56 | A212 | 0.387 | 84 |
[1] | LIU B, ZHAO D, ZHANG P, et al. Seedling evaluation of six walnut rootstock species originated in China based on principal component analysis and cluster analysis[J]. Sci Hortic, 2020, 265: 109212. DOI:10.1016/j.scienta.2020.109212. |
[2] | RAJA V, AHMAD S I, IRSHAD M, et al. Anticandidal activity of ethanolic root extract of Juglans regia (L.): effect on growth, cell morphology, and key virulence factors[J]. J De Mycol Médicale, 2017, 27: 476-486. DOI:10.1016/j.mycmed.2017.07.002. |
[3] | ZHAO P, ZHOU H J, POTTER D, et al. Population genetics, phylogenomics and hybrid speciation of Juglans in China determined from whole chloroplast genomes, transcriptomes, and genotyping-by-sequencing (GBS)[J]. Mol Phylogenetics Evol, 2018, 126: 250-265. DOI:10.1016/j.ympev.2018.04.014. |
[4] | 中华人民共和国国家统计局. 中国统计年鉴 2021[M]. 北京: 中国统计出版社, 2021. |
National Bureau of statistics. China statistical yearbook 2021[M]. Beijing: China Statistics Press, 2021. | |
[5] | BERNARD A, LHEUREUX F, DIRLEWANGER E. Walnut: past and future of genetic improvement[J]. Tree Genet Genomes, 2018, 14: 1. DOI:10.1007/s11295-017-1214-0. |
[6] | FAMULA R A, RICHARDS J H, FAMULA T R, et al. Association genetics of carbon isotope discrimination and leaf morphology in a breeding population of Juglans regia L.[J]. Tree Genet Genomes, 2019, 15(1): 6. DOI:10.1007/s11295-018-1307-4. |
[7] | MARTÍNEZ-GARCÍA P J, FAMULA R A, LESLIE C, et al. Predicting breeding values and genetic components using generalized linear mixed models for categorical and continuous traits in walnut (Juglans regia)[J]. Tree Genet Genomes, 2017, 13(5):109. DOI:10.1007/s11295-017-1187-z. |
[8] | POGGETTI L, ERMACORA P, CIPRIANI G, et al. MorPhological and carpological variability of walnut germplasm (Juglans regia L.) collected in north-eastern Italy and selection of superior genotypes[J]. Sci Hortic, 2017, 225: 615-619. DOI:10.1016/j.scienta.2017.07.056. |
[9] | KHADIVI A, MONTAZERAN A, REZAEI M, et al. The pomological characterization of walnut (Juglans regia L.) to select the superior genotypes: an opportunity for genetic improvement[J]. Sci Hortic, 2019, 248: 29-33. DOI:10.1016/j.scienta.2018.12.054. |
[10] | MAHMOODI R, DADPOUR M R, HASSANI D, et al. Development of a core collection in Iranian walnut (Juglans regia L.) germplasm using the phenotypic diversity[J]. Sci Hortic, 2019, 249: 439-448. DOI:10.1016/j.scienta.2019.02.017. |
[11] | COSMULESCU S, STEFANESCU D. Morphological variation among Persian walnut (Juglans regia) genotypes within the population and depending on climatic year[J]. Sci Hortic, 2018, 242: 20-24. DOI:10.1016/j.scienta.2018.07.018. |
[12] | IPEK M, ARıKAN Ş, PıRLAK L, et al. Phenological, morphological and molecular characterization of some promising walnut (Juglans regia L) genotypes in Konya[J]. Erwerbs-Obstbau, 2019, 61(2): 149-156. DOI:10.1007/s10341-018-0411-9. |
[13] | SHAH R A, BAKSHI P, SHARMA N, et al. Diversity assessment and selection of superior Persian walnut (Juglans regia L.) trees of seedling origin from north-western Himalayan region[J]. Resour Environ Sustain, 2021, 3:100015. DOI:10.1016/j.resenv.2021.100015. |
[14] | 王滑. 西藏核桃种质资源遗传多样性研究[D]. 北京: 中国林业科学研究院, 2010. |
WANG H. Genetic diversity of germplasm resources on walnut in Tibet region[D]. Beijing: Chinese Academy of Forestry, 2010. | |
[15] | 徐永杰. 大巴山区核桃种质资源评价及其坚果特异性状发掘[D]. 北京: 中国林业科学研究院, 2016. |
XU Y J. Germplasm evaluation and nut specific traits excavation of walnut in Daba Mountains[D]. Beijing: Chinese Academy of Forestry, 2016. | |
[16] | 李亚兰, 潘存德, 范江涛, 等. 基于坚果表型性状的新疆核桃种质资源多样性与分类[J]. 西南农业学报, 2019, 32(9): 1986-1994. |
LI Y L, PAN C D, FAN J T, et al. Diversity and classification of common walnut (Juglans regia L.) germplasm in Xinjiang based on nut phenotype traits[J]. Southwest China J Agric Sci, 2019, 32(9): 1986-1994. DOI:10.16213/j.cnki.scjas.2019.9.004. | |
[17] | 蒲光兰, 肖千文, 吴开志, 等. 四川核桃种质资源表型多样性研究[J]. 湖南农业大学学报(自然科学版), 2014, 40(2): 162-167. |
PU G L, XIAO Q W, WU K Z, et al. Research on the phenotypic diversity of walnut germplasm resources in Sichuan[J]. J Hunan Agric Univ (Nat Sci), 2014, 40(2): 162-167. DOI:10.13331/j.cnki.jhau.2014.02.011. | |
[18] | 冀爱青. 华北山地核桃遗传多样性和矿质营养特性研究[D]. 太古: 山西农业大学, 2014. |
JI A Q. The genetic diversity and characteristics of mineral nutrition of the north China mountains walnut[D]. Taigu: Shanxi Agricultural University, 2014. | |
[19] | 宋晨歌. 河北省核桃种质资源调查与分析[D]. 保定: 河北农业大学, 2015. |
SONG C G. The investigation and analysis on walnut resource survey in Hebei Province[D]. Baoding: Hebei Agricultural University, 2015. | |
[20] | 刘宝尧. 青海地方核桃种质资源遗传多样性研究[D]. 西宁: 青海大学, 2016. |
LIU B Y. Genetic diversity of germplasm resources on walnut (Juglans regia L.) in Qinghai[D]. Xining: Qinghai University, 2016. | |
[21] | 李建挥, 李柏海, 柏文富, 等. 湖南省核桃资源调查及表型特征分析[J]. 湖南林业科技, 2019, 46(6): 59-67, 73. |
LI J H, LI B H, BAI W F, et al. Investigation of walnut and hickory genetic resources in Hunan Province[J]. Hunan For Sci & Technol, 2019, 46(6): 59-67, 73. DOI:10.3969/j.issn.1003-5710.2019.06.010. | |
[22] | 雒宏佳, 李建红, 赵生春, 等. 甘肃省核桃坚果表型特征及多样性研究[J]. 中国果树, 2019(5): 87-92. |
LUO H J, LI J H, ZHAO S C, et al. Phenotypic characteristics and diversity of walnut nuts in Gansu Province[J]. China Fruits, 2019(5): 87-92. DOI:10.16626/j.cnki.issn1000-8047.2019.05.022. | |
[23] | 杨从华, 肖良俊, 宁德鲁, 等. 云南核桃种质资源调查初报[J]. 西部林业科学, 2018, 47(5): 89-93. |
YANG C H, XIAO L J, NING D L, et al. Preliminary report on investigation of Yunnan walnut germplasm resources[J]. J West China For Sci, 2018, 47(5): 89-93. DOI:10.16473/j.cnki.xblykx1972.2018.05.015. | |
[24] | 陆婷, 陈少瑜, 吴涛, 等. 迪庆州核桃种质资源的遗传多样性与遗传结构[J]. 西部林业科学, 2021, 50(2): 71-77. |
LU T, CHEN S Y, WU T, et al. Genetic diversity and genetic structure of walnut germplasm resources in Diqing[J]. J West China For Sci, 2021, 50(2): 71-77. DOI:10.16473/j.cnki.xblykx1972.2021.02.010. | |
[25] | 张建英, 张莹莹, 毛向红. 砂壤土绿岭核桃根系空间分布规律研究[J]. 安徽农业科学, 2020, 48(23): 151-153. |
ZHANG J Y, ZHANG Y Y, MAO X H. Research on the spatial distribution of lüling walnut root system in sandy loam[J]. J Anhui Agric Sci, 2020, 48(23): 151-153. DOI:10.3969/j.issn.0517-6611.2020.23.037. | |
[26] | MILOŠEVIC T, MILOŠEVIC N. Determination of size and shape features of hazelnuts using multivariate analysis[J]. Acta Sci Polonorum Hortorum Cultus, 2017, 16(5): 49-61. DOI:10.24326/asphc.2017.5.6. |
[27] | KHAN W, HUSSAIN M, ALI K, et al. Distribution and phenotypic variation in Juglans regia L. growing in Hindu Kush ranges of Pakistan[J]. Acta Ecol Sin, 2020, 40(5): 363-372. DOI:10.1016/j.chnaes.2020.02.009. |
[28] | 刘珮君, 王晓敏, 李国花, 等. 166份番茄种质资源的综合评价[J]. 云南大学学报(自然科学版), 2020, 42(4): 792-803. |
LIU P J, WANG X M, LI G H, et al. Comprehensive evaluation of 166 tomato germplasm resources[J]. J Yunnan Univ (Nat Sci Ed), 2020, 42(4): 792-803. | |
[29] | CHEN L N, MA Q G, CHEN Y K, et al. Identification of major walnut cultivars grown in China based on nut phenotypes and SSR markers[J]. Sci Hortic, 2014, 168: 240-248. DOI:10.1016/j.scienta.2014.02.004. |
[30] | ZENELI G, KOLA H, DIDA M. Phenotypic variation in native walnut populations of northern Albania[J]. Sci Hortic, 2005, 105(1): 91-100. DOI:10.1016/j.scienta.2004.11.003. |
[31] | BUJDOSOG, CSEKE K. The Persian (English) walnut (Juglans regia L.) assortment of Hungary: nut characteristics and origin[J]. Sci Hortic, 2021, 283: 110035. DOI:10.1016/j.scienta.2021.110035. |
[32] | COSMULESCU S, STEFANESCU D, IONESCU M B. Genetic diversity among Juglans regia genotypes based on morphological characters of nut[J]. Erwerbs-Obstbau, 2018, 60(2): 137-143. DOI:10.1007/s10341-017-0347-5. |
[33] | EBRAHIMI A, KHADIVI-KHUB A, NOSRATI Z, et al. Identification of superior walnut (Juglans regia) genotypes with late leafing and high kernel quality in Iran[J]. Sci Hortic, 2015, 193: 195-201. DOI:10.1016/j.scienta.2015.06.049. |
[34] | SHAMLU F, REZAEI M, LAWSON S, et al. Genetic diversity of superior Persian walnut genotypes in Azadshahr, Iran[J]. Physiol Mol Biol Plants, 2018, 24(5): 939-949. DOI:10.1007/s12298-018-0573-9. |
[35] | KHADIVI-KHUB A, EBRAHIMI A, SHEIBANI F, et al. Phenological and pomological characterization of Persian walnut to select promising trees[J]. Euphytica, 2015, 205(2): 557-567. DOI:10.1007/s10681-015-1429-9. |
[36] | 赵宝军, 刘枫, 张俊佩, 等. 核桃杂交后代产量性状因子分析与综合评价[J/OL]. 分子植物育种, 2021: 1-12. (2021-10-15). [2022-05-20] https://kns.cnki.net/kcms/detail/46.1068.S.20211015.0513.010.html. |
ZHAO B J, LIU F, ZHANG J P, et al. Factor analysis and comprehensive evaluation of yield characteristics of walnut hybrid progeny[J/OL]. Mol Plant Breed, 2021: 1-12. (2021-10-15)[2022-05-20]. https://kns.cnki.net/kcms/detail/46.1068.S.20211015.0513.010.html. | |
[37] | 陈善波, 王莎, 金银春, 等. 四川穗状核桃优良单株坚果综合性状评价研究[J]. 四川林业科技, 2018, 39(1): 32-36. |
CHEN S B, WANG S, JIN Y C, et al. Research on evaluation of comprehensive characters of nuts from superior individuals in Sichuan[J]. J Sichuan For Sci Technol, 2018, 39(1): 32-36. DOI:10.16779/j.cnki.1003-5508.2018.01.007. |
[1] | QI Ya, WANG Gaiping, XUANYUAN Xintong, PENG Daqing, LI Shuomin, LI Shouke, CAO Fuliang. Evaluation of medicinal asexual strains of Xanthoceras sorbifolium [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(2): 38-44. |
[2] | YAO Junxiu, REN Fei, WANG Yinhua, LI Qinghua, YAN Liping, ZHENG Yan, WU Dejun. Genetic diversity of germplasm resources of Sambucus based on SSR fluorescent marker [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(2): 75-82. |
[3] | LI Yang, ZHANG Yunqi, WEN Yue, ZHANG Suilin, CHEN Yonghao, QI Jianxun, ZHANG Junpei, HOU Zhixia. Correlation analysis and model construction of nut phenotype and kernel quality of early-fruiting walnuts (Juglans regia) [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2025, 49(1): 119-127. |
[4] | FU Chenlong, LI Meng, TIAN Changfen, SONG Yanfeng, YI Xiangui, WANG Xianrong. Prediction of potential suitable regions of Prunus pseudocerasus based on MaxEnt model under climate change [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(4): 235-242. |
[5] | LIU Xialan, SONG Ziqi, HU Fengrong, SHANG Xulan. A comparative study on leaf characters between diploid and tetraploid of Cyclocarya paliurus [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(4): 76-84. |
[6] | YIN Zengfang, OU Xiang, CHEN Yao, YANG Aixiang, SUN Liyong. Research progress and prospects of biological basis in Magnolia biondii [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2024, 48(2): 256-262. |
[7] | FAN Xiaoyun, GUO Sujuan, LI Yanhua, JIANG Xibing. Study on correlation between browning degree of chestnut fruit and total phenols and flavonoids [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(6): 159-166. |
[8] | LI Jianhui, LI Bohai, WU Sizheng, BAI Wenfu, YU Lin, NIE Dongling, YAN Jiawen, XIONG Ying, XIANG Zuheng, PENG Xianfeng. Research on the nutphenotypic traits and diversities of walnut in western Hunan [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(1): 171-179. |
[9] | FANG Shengzuo. A review on the development history and the resource silviculture of Cyclocarya paliurus industry [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(6): 115-126. |
[10] | LIANG Wenchao, BU Xing, LUO Siqian, XIE Yinfeng, ZHANG Wangxiang, HU Jialin. Effects of nitrogen, phosphorus and potassium compound fertilization on the physiological characteristics of Chaenomeles speciosa ‘Changshouguan’ after processing of warming in the post floral stage [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(5): 81-88. |
[11] | LI Qingshun, JIN Wanzhou, WANG Dejun, SUN Jingmei, LI Hongtao. A comprehensive evaluation of forest land quality using multi tree site form index [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2021, 45(6): 81-89. |
[12] | LIU Yumei, ZHAO Huanyuan, CUI Maokai, WANG Tianyu, GAO Xiangqian, YANG Guiyan. Cloning and stress response of the JrERF2⁃2 gene from Juglans regia [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(3): 58-64. |
[13] | ZHAO Xiaojun, CHENG Fang, ZHANG Kang, HUANG Kaidong, NI Yun, MENG Xiao, TANG Luozhong. Root morphology of different poplar clone stecklings under waterlogging and flooding treatment [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(5): 1-8. |
[14] | ZHAI Dacai, FANG Zhen, WU Jinfei, YAO Qi, BAI Xiaohui, YANG Lichun, HAO Qingqing, ZHANG Yan. Analysis on the character diversity of Ormosia hosiei seeds from different producing regions [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(04): 63-69. |
[15] | YANG Yifan, ZHOU Ting, FAN Junjun, MU Qian, ZHANG Jing, ZHANG Wangxiang, YU Zhongming. Cultivar evaluation and selection in ornamental crabapple for cut flower application [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2019, 43(04): 70-76. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||