Analysis of SSR locus based on the whole genome sequences of Cyclocarya paliurus and the development of polymorphic primers

LIU Li, QU Yinquan, YU Yanhao, WANG Qian, FU Xiangxiang

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (4) : 67-75.

PDF(2807 KB)
PDF(2807 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (4) : 67-75. DOI: 10.12302/j.issn.1000-2006.202206001

Analysis of SSR locus based on the whole genome sequences of Cyclocarya paliurus and the development of polymorphic primers

Author information +
History +

Abstract

【Objective】Genomic simple repeat sequence (SSR) loci were analyzed by screening the whole genome of Cyclocarya paliurus. DNA molecular ID cards of 19 excellent medicinal clones of C. paliurus were constructed based on the newly-developed SSR primers. These genomic SSR markers could support further research, such as the evaluation of the germplasm resource, analysis of genetic diversity, and identification of cultivars/clones.【Method】The SSR loci were screened along with the whole genome of C. paliurus and were enriched and analyzed using MISA software. Subsequently, SSR primers were designed using Primer 3.0. Furthermore, a system for identifying clones of C. paliurus was constructed based on selected SSR markers with high reproducibility and stability.【Result】(1) We detected 89 741 SSR loci from the whole genome, with an occurrence frequency of 62.07%. (2) Among all SSR loci, the proportion of SSRs with a mononucleotide motif was the highest (62.67%) and a hexa-nucleotide repeat was the lowest (0.15%). Most of the repeated motifs in the SSR loci were dominated by (A/T)n. (3) The repeat number of mono-nucleotide and di-nucleotide motifs ranged from 6 to 16. With the increase in the repeat number, the frequencies of various SSR repetition types displayed a downward trend. (4) The length of the SSR sequences varied from 10 to 476 bp, and this length variation existed in different repetitive motifs. Additionally, the frequency of SSR occurrence tended to decrease as the repeat number increased. (5) We successfully designed 78 285 pairs of SSR primers using Primer 3.0. A total of 377 primer pairs were randomly synthesized for amplifying polymorphic SSR fragments, among which 75 pairs primers were successful. Moreover, quick response code DNA molecular ID cards for 19 medical-use clones of C. paliurus were constructed by five pairs of polymorphic SSR primers with a mono-nucleotide motif.【Conclusion】The frequency of genomic SSR loci was high, and there was variability in the type of SSR loci. Simple repeat sequences developed from the whole genome of C. paliurus could be effective candidate molecular markers with further applications in germplasm resource evaluation and fingerprint construction for multi-use clones of C. paliurus.

Key words

Cyclocarya paliurus / simple sequence repeat (SSR) / whole genome / DNA molecular ID card

Cite this article

Download Citations
LIU Li , QU Yinquan , YU Yanhao , et al . Analysis of SSR locus based on the whole genome sequences of Cyclocarya paliurus and the development of polymorphic primers[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(4): 67-75 https://doi.org/10.12302/j.issn.1000-2006.202206001

References

[1]
方升佐, 洑香香. 青钱柳资源培育与开发利用的研究进展[J]. 南京林业大学学报(自然科学版), 2007, 31(1):95-100.
FANG S Z, FU X X. Progress and prospects on silviculture and utilization of Cyclocarya paliurus resources[J]. J Nanjing For Univ (Nat Sci Ed), 2007, 31(1):95-100.DOI: 10.3969/j.issn.1000-2006.2007.01.023.
[2]
孙戴妍, 尚旭岚, 洑香香, 等. 青钱柳胸径生长和木材密度的地理变异规律[J]. 南京林业大学学报(自然科学版), 2017, 41(4):1-5.
SUN D Y, SHANG X L, FU X X, et al. Regularity on geographic variation in DBH growth and wood density of Cyclocarya paliurus[J]. J Nanjing For Univ (Nat Sci Ed), 2017, 41(4):1-5.DOI: 10.3969/j.issn.1000-2006.201610005.
[3]
侯小利, 刘晓霞, 王硕, 等. 青钱柳叶总黄酮对自发性高血压大鼠的影响[J]. 中药药理与临床, 2014, 30(2):62-69.
HOU X L, LIU X X, WANG S, et al. Effect of the flavonoids from Cyclocarya paliurus on spontaneous hypertension rats[J]. Pharmacol Clin Chin Mater Med, 2014, 30(2):62-69.DOI: 10.13412/j.cnki.zyyl.2014.02.021.
[4]
WU Z F, MENG F C, CAO L J, et al. Triterpenoids from Cyclocarya paliurus and their inhibitory effect on the secretion of apoliprotein B48 in Caco-2 cells[J]. Phytochemistry, 2017, 142:76-84.DOI: 10.1016/j.phytochem.2017.06.015.
[5]
YANG Z W, WANG J, LI J G, et al. Antihyperlipidemic and hepatoprotective activities of polysaccharide fraction from Cyclocarya paliurus in high-fat emulsion-induced hyperlipidaemic mice[J]. Carbohydr Polym, 2018, 183:11-20.DOI: 10.1016/j.carbpol.2017.11.033.
[6]
郑观涛, 殷志琦. 药用植物青钱柳的开发研究进展[J]. 世界最新医学信息文摘, 2019, 19(43):123-124.
ZHENG G T, YIN Z Q. Research progress on development in Cyclocarya paliurus[J]. World Latest Med Inf, 2019, 19(43):123-124.DOI: 10.19613/j.cnki.1671-3141.2019.43.058.
[7]
林源, 陈培, 周明明, 等. 天然居群青钱柳叶主要生物活性物质及抗氧化活性研究[J]. 南京林业大学学报(自然科学版), 2020, 44(2):10-16.
LIN Y, CHEN P, ZHOU M M, et al. Key bioactive substances and their antioxidant activities in Cyclocarya paliurus (Batal.) Iljinskaja leaves collected from natural populations[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(2):10-16.DOI: 10.3969/j.issn.1000-2006.201901045.
[8]
周永晟, 徐子恒, 袁发银, 等. 亚热带3个地点青钱柳群落特征比较[J]. 南京林业大学学报(自然科学版), 2021, 45(1):29-35.
ZHOU Y S, XU Z H, YUAN F Y, et al. Comparisons of community characteristics among three natural forests of Cyclocarya paliurus in the subtropical region of China[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(1):29-35.DOI: 10.12302/j.issn.1000-2006.202005017.
[9]
SUN C W, ZHOU Y S, FANG S Z, et al. Ecological gradient analysis and environmental interpretation of Cyclocarya paliurus communities[J]. Forests, 2021, 12(2):146.DOI: 10.3390/f12020146.
[10]
SUN C W, SHANG X L, DING H F, et al. Natural variations in flavonoids and triterpenoids of Cyclocarya paliurus leaves[J]. J For Res, 2021, 32(2):805-814.DOI: 10.1007/s11676-020-01139-1.
[11]
ZHOU M M, QUEK S Y, SHANG X L, et al. Geographical variations of triterpenoid contents in Cyclocarya paliurus leaves and their inhibitory effects on HeLa cells[J]. Ind Crops Prod, 2021, 162:113314.DOI: 10.1016/j.indcrop.2021.113314.
[12]
田力, 徐骋炜, 尚旭岚, 等. 青钱柳药用优良单株评价与选择[J]. 南京林业大学学报(自然科学版), 2021, 45(1):21-28.
TIAN L, XU C W, SHANG X L, et al. Evaluation and selection on superior individuals for medicinal use of Cyclocarya paliurus[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(1):21-28.DOI: 10.12302/j.issn.1000-2006.202002018.
[13]
王久利, 朱明星, 徐明行, 等. 基于RAD-seq技术的异型花SSR信息分析[J]. 植物研究, 2017, 37(3):447-452,460.
WANG J L, ZHU M X, XU M H, et al. Analysis on SSR in Sinoswertia tetraptera base on RAD-seq[J]. Bull Bot Res, 2017, 37(3):447-452,460.DOI: 10.7525/j.issn.1673-5102.2017.03.016.
[14]
GONZAGA Z J, ASLAM K, SEPTININGSIH E M, et al. Evaluation of SSR and SNP markers for molecular breeding in rice[J]. Plant Breed Biotech, 2015, 3(2):139-152.DOI: 10.9787/pbb.2015.3.2.139.
[15]
LI X C, FU X X, SHANG X L, et al. Natural population structure and genetic differentiation for heterodicogamous plant:Cyclocarya paliurus (Batal.) Iljinskaja (Juglandaceae)[J]. Tree Genet Genomes, 2017, 13(4):80.DOI: 10.1007/s11295-017-1157-5.
[16]
SAVIĆ A, PIPAN B, VASIĆ M, et al. Genetic diversity of common bean (Phaseolus vulgaris L.) germplasm from Serbia,as revealed by single sequence repeats (SSR)[J]. Sci Hortic, 2021, 288:110405.DOI: 10.1016/j.scienta.2021.110405.
[17]
LI B, LIN F R, HUANG P, et al. Development of nuclear SSR and chloroplast genome markers in diverse Liriodendron chinense germplasm based on low-coverage whole genome sequencing[J]. Biol Res, 2020, 53(1):21.DOI: 10.1186/s40659-020-00289-0.
[18]
LI C H, ZHENG Y Q, LIU Y, et al. Development of genomic SSR for the subtropical hardwood tree Dalbergia hupeana and assessment of their transferability to other related species[J]. Forests, 2021, 12(6):804.DOI: 10.3390/f12060804.
[19]
LEE K J, LEE J R, SEBASTIN R, et al. Assessment of genetic diversity of tea germplasm for its management and sustainable use in Korea genebank[J]. Forests, 2019, 10(9):780.DOI: 10.3390/f10090780.
[20]
王希, 陈丽, 赵春雷. 利用MISA工具对不同类型序列进行SSR标记位点挖掘的探讨[J]. 中国农学通报, 2016, 32(10):150-156.
WANG X, CHEN L, ZHAO C L. Mining SSR molecular marker sites with MISA tool for different types of sequences[J]. Chin Agric Sci Bull, 2016, 32(10):150-156.
[21]
UNTERGASSER A, CUTCUTACHE I, KORESSAAR T, et al. Primer3:new capabilities and interfaces[J]. Nucleic Acids Res, 2012, 40(15):e115.DOI: 10.1093/nar/gks596.
[22]
乔舒婷, 董文其, 胡齐赞, 等. 基于丝瓜全基因组序列SSR分子标记开发[J]. 分子植物育种, 2023, 21(6):1937-1947.
QIAO S T, DONG W Q, HU Q Z, et al. Development of SSR molecular markers based on whole genome sequences of sponge gourd[J]. Mol Plant Breed, 2023, 21(6):1937-1947.DOI: 10.13271/j.mpb.021.001937.
[23]
郭艳春, 张力岚, 陈思远, 等. 黄麻应用核心种质的DNA分子身份证构建[J]. 作物学报, 2021, 47(1):80-93.
GUO Y C, ZHANG L L, CHEN S Y, et al. Establishment of DNA molecular fingerprint of applied core germplasm in jute (Corchorus spp.)[J]. Acta Agron Sin, 2021, 47(1):80-93.DOI: 10.3724/SP.J.1006.2021.04022.
[24]
XIA E H, ZHANG H B, SHENG J, et al. The tea tree genome provides insights into tea flavor and independent evolution of caffeine biosynthesis[J]. Mol Plant, 2017, 10(6):866-877.DOI: 10.1016/j.molp.2017.04.002.
[25]
宋立肖, 李国旗, 靳长青, 等. 大麻状罗布麻的全基因组分析和SSR标记开发[J]. 植物遗传资源学报, 2019, 20(5):1309-1316.
SONG L X, LI G Q, JIN C Q, et al. Whole genome sequencing and development of SSR markers in Apocynum cannabinum[J]. J Plant Genet Resour, 2019, 20(5):1309-1316.DOI: 10.13430/j.cnki.jpgr.20181218002.
[26]
崔哲, 左力辉, 韩坤瑾, 等. 毛果杨(Populus trichocarpa)全基因组SSR位点分布规律[J]. 分子植物育种, 2020, 18(11):3683-3692.
CUI Z, ZUO L H, HAN K J, et al. Distribution rule of SSR loci in whole genome of Populus trichocarpa[J]. Mol Plant Breed, 2020, 18(11):3683-3692.DOI: 10.13271/j.mpb.018.003683.
[27]
蒋向辉, 苑静, 王翔. 青钱柳叶片转录组数据组装及基因功能注释[J]. 华中师范大学学报(自然科学版), 2018, 52(6):822-831.
JIANG X H, YUAN J, WANG X. De novo transcriptome assembly and annotation of the leaves of Cyclocarya paliurus[J]. J Cent China Norm Univ (Nat Sci),2018, 52(6):822-831.DOI: 10.19603/j.cnki.1000-1190.2018.06.012.
[28]
陈秀娟, 柏明娥, 王丽玲, 等. 青钱柳种质资源亲缘关系的ISSR分析评价[J]. 中国林副特产, 2016(4):6-10.
CHEN X J, BAI M E, WANG L L, et al. ISSR analysis and evaluation of genetic relationship of Cyclocarya paliurus germplasm resources[J]. For Prod Speciality China, 2016(4):6-10.DOI: 10.13268/j.cnki.fbsic.2016.04.002.
[29]
周一旸, 洑香香, 尚旭岚, 等. 青钱柳种质资源多样性SRAP初步分析[J]. 基因组学与应用生物学, 2011, 30(1):40-46.
ZHOU Y Y, FU X X, SHANG X L, et al. Preliminary study on the genetic diversity of germplasm for Cyclocarya paliurus revealed by SRAP markers[J]. Genom Appl Biol, 2011, 30(1):40-46.DOI: 10.3969/gab.030.000040.
[30]
FAN D M, YE L J, LUO Y, et al. Development of microsatellite loci for Cyclocarya paliurus (Juglandaceae),a monotypic species in subtropical China[J]. Appl Plant Sci, 2013, 1(6):apps.1200524.DOI: 10.3732/apps.1200524.
[31]
XU J, LIU L, XU Y B, et al. Development and characterization of simple sequence repeat markers providing genome-wide coverage and high resolution in maize[J]. DNA Res, 2013, 20(5):497-509.DOI: 10.1093/dnares/dst026.
[32]
HE S M, DONG X, ZHANG G H, et al. High quality genome of Erigeron breviscapus provides a reference for herbal plants in Asteraceae[J]. Mol Ecol Resour, 2021, 21(1):153-169.DOI: 10.1111/1755-0998.13257.
[33]
林恩文, 林榕榕, 陈钦常, 等. 龙眼全基因组和转录本序列SSR位点的鉴定[J]. 福建农林大学学报(自然科学版), 2022, 51(4):493-501.
LIN E W, LIN R R, CHEN Q C, et al. SSR loci analysis in genome and transcriptome of Longan[J]. J Fujian Agric For Univ (Nat Sci Ed), 2022, 51(4):493-501.DOI: 10.13323/j.cnki.j.fafu(nat.sci.).2022.04.007.
[34]
KARAOGLU H, LEE C M Y, MEYER W. Survey of simple sequence repeats in completed fungal genomes[J]. Mol Biol Evol, 2005, 22(3):639-649.DOI: 10.1093/molbev/msi057.
[35]
刘松卫, 卢迎春, 宋婉玲, 等. 基于灯盏花全基因组SSR位点分析及多态性引物开发[J]. 分子植物育种, 2018, 16(12):4003-4009.
LIU S W, LU Y C, SONG W L, et al. SSR loci analysis based on Erigeron breviscapus genome and polymorphism primers development[J]. Mol Plant Breed, 2018, 16(12):4003-4009.DOI: 10.13271/j.mpb.016.004003.
[36]
CARDLE L, RAMSAY L, MILBOURNE D, et al. Computational and experimental characterization of physically clustered simple sequence repeats in plants[J]. Genetics, 2000, 156(2):847-854.DOI: 10.1093/genetics/156.2.847.
[37]
王玉龙, 黄冰艳, 王思雨, 等. 四倍体野生种花生(A.monticola)全基因组SSR的开发与特征分析[J]. 中国农业科学, 2019, 52(15):2567-2585.
WANG Y L, HUANG B Y, WANG S Y, et al. Development and characterization of whole genome SSR in tetraploid wild peanut(Arachis monticola)[J]. Sci Agric Sin, 2019, 52(15):2567-2585.DOI: 10.3864/j.issn.0578-1752.2019.15.002.
[38]
LIU S R, LI W Y, LONG D, et al. Development and characterization of genomic and expressed SSRs in citrus by genome-wide analysis[J]. PLoS One, 2013, 8(10):e75149.DOI: 10.1371/journal.pone.0075149.
[39]
SCHORDERET D F, GARTLER S M. Analysis of CpG suppression in methylated and nonmethylated species[J]. Proc Natl Acad Sci USA, 1992, 89(3):957-961.DOI: 10.1073/pnas.89.3.957.
[40]
宋莎, 冯建文, 吴亚维, 等. 基于RAD-seq技术的花红SSR信息分析[J]. 贵州农业科学, 2019, 47(11):103-106.
SONG S, FENG J W, WU Y W, et al. Analysis on SSR in Malus asiatica Nakai.base on RAD sequencing[J]. Guizhou Agric Sci, 2019, 47(11):103-106.DOI: 10.3969/j.issn.1001-3601.2019.11.021.
[41]
周晓君, 王海亮, 李方玲, 等. 基于RAD-seq技术开发灵宝杜鹃多态性SSR标记[J]. 农业生物技术学报, 2019, 27(1):55-62.
ZHOU X J, WANG H L, LI F L, et al. Development of polymorphic SSR markers in Rhododendron henanense subsp.lingbaoense based on RAD-seq[J]. J Agric Biotechnol, 2019, 27(1):55-62.DOI: 10.3969/j.issn.1674-7968.2019.01.006.
[42]
BEGHÈ D, MOLANO J F G, FABBRI A, et al. Olive biodiversity in Colombia.A molecular study of local germplasm[J]. Sci Hortic, 2015, 189:122-131.DOI: 10.1016/j.scienta.2015.04.003.
[43]
CREGAN P B, JARVIK T, BUSH A L, et al. An integrated genetic linkage map of the soybean genome[J]. Crop Sci, 1999, 39(5):1464-1490.DOI: 10.2135/cropsci1999.3951464x.
PDF(2807 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/