Application of functional microorganisms in ecological restoration of abandoned mines

ZHANG Jinchi, LI Chong, JIA Zhaohui, LIU Xin, MENG Miaojing

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (6) : 146-156.

PDF(4066 KB)
PDF(4066 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (6) : 146-156. DOI: 10.12302/j.issn.1000-2006.202206012

Application of functional microorganisms in ecological restoration of abandoned mines

Author information +
History +

Abstract

Economic growth has historically been significantly fueled by the mining industry. However, many abandoned mines which remain after mining activities have caused significant environmental damage. Based on the background of mine ecological restoration and the influence of microorganisms on soil and plants, the author divides microorganisms into five functional microorganism categories, including plant growth-promoting rhizobacteria, mineral-solubilizing microorganism, nitrogen fixing bacteria, rhizobia and mycorrhiza fungi. This review highlights the critical role of those functional microorganisms play in soil reconstruction and revegetation, summarizes the present issues with abandoned mines, and discusses common ecological restoration strategies. It is considered that: it is ideal for functional microbial inoculant to exist constantly because they can contribute positively to the ecosystem for a long time, and it is essential to extend the survival time of microbial inoculants and make their effects last for the ecological restoration of abandoned mines. In view of the special characteristics of different types of abandoned mine ecosystems, conducting research related to in situ inoculation of microorganisms in abandoned mines, engineering and transferring microbial traits into selected effective inter-rooted microbial isolates or entire inter-rooted microbial communities to produce functional microorganisms suitable for ecological restoration of different types of abandoned mines is an urgent problem to be solved for the ecological restoration of abandoned mines; and further revealing the long-lasting mechanisms of mineral solubilization by microorganisms and determining how to mobilize nutrients through mineral solubilization as an integral part of the whole soil community to more effectively and durably exert the mineral solubilization effect of microorganisms and secure the nutrient supply for plants.

Key words

abandoned mine / ecological restoration / functional microorganisms

Cite this article

Download Citations
ZHANG Jinchi , LI Chong , JIA Zhaohui , et al . Application of functional microorganisms in ecological restoration of abandoned mines[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(6): 146-156 https://doi.org/10.12302/j.issn.1000-2006.202206012

References

[1]
SONTER L J, DADE M C, WATSON J E M, et al. Renewable energy production will exacerbate mining threats to biodiversity[J]. Nat Commun, 2020, 11:4174.DOI:10.1038/s41467-020-17928-5.
[2]
赵洋, 鞠美庭, 沈镭. 我国矿产资源安全现状及对策[J]. 资源与产业, 2011, 13(6):79-83.
ZHAO Y, JU M T, SHEN L. Situation and approaches to China’s ore resources security[J]. Resour & Ind, 2011, 13(6):79-83.DOI:10.13776/j.cnki.resourcesindustries.2011.06.001.
[3]
张进德, 郗富瑞. 我国废弃矿山生态修复研究[J]. 生态学报, 2020, 40(21):7921-7930.
ZHANG J D, XI F R. Study on ecological restoration of abandoned mines in China[J]. Acta Ecol Sin, 2020, 40(21):7921-7930.DOI:10.5846/stxb201908301799.
[4]
程睿. 露采金属矿山采坑境界面生态修复技术研究[J]. 湖南生态科学学报, 2022, 9(1):50-57.
CHENG R. Study on ecological restoration technology of stope boundary interface in open pit metal mines[J]. J Hunan Ecol Sci, 2022, 9(1):50-57.DOI:10.3969/j.issn.2095-7300.2022.01.007.
[5]
SALOM A T, KIVINEN S. Closed and abandoned mines in Namibia:a critical review of environmental impacts and constraints to rehabilitation[J]. S Afr N Geogr J, 2020, 102(3):389-405.DOI:10.1080/03736245.2019.1698450.
[6]
BRADSHAW A. Restoration of mined lands: using natural processes[J]. Ecol Eng, 1997, 8(4):255-269.DOI:10.1016/S0925-8574(97)00022-0.
[7]
YANG Y J, TANG J J, ZHANG Y Y, et al. Reforestation improves vegetation coverage and biomass,but not spatial structure,on semiarid mine dumps[J]. Ecol Eng, 2022, 175:106508.DOI:10.1016/j.ecoleng.2021.106508.
[8]
自然资源部. 矿山生态修复技术规范:TD/T 1070.1-2022[S]. 北京: 中华人民共和国自然资源部,2022-11-01.
[9]
THAVAMANI P, SAMKUMAR R A, SATHEESH V, et al. Microbes from mined sites: harnessing their potential for reclamation of derelict mine sites[J]. Environ Pollut, 2017, 230:495-505.DOI:10.1016/j.envpol.2017.06.056.
[10]
李长富. 现代矿山开采规模优化及综合工艺研究[J]. 世界有色金属, 2018(4):74-75.
LI C F. Optimization of modern mining scale and research on comprehensive technology[J]. World Nonferrous Met, 2018(4):74-75.
[11]
吴昊, 李在永, 张洪泽. 透视我国非煤矿山事故隐患:综合治理尾矿库与矿山安全隐患[J]. 科技创新导报, 2011, 8(14):61.
WU H, LI Z Y, ZHANG H Z. Perspective on the hidden dangers of non-coal mine accidents in China: comprehensive treatment of tailings pond and mine safety hidden dangers[J]. Sci Technol Innov Her, 2011, 8(14):61.DOI:10.16660/j.cnki.1674-098x.2011.14.036.
[12]
朱晓勇, 胡国长. 花岗岩露天关闭矿山生态修复技术应用[J]. 地质与勘探, 2022, 58(1):168-175.
ZHU X Y, HU G Z. Application of ecological restoration technology to closed granite open pit mines[J]. Geol Explor, 2022, 58(1):168-175.DOI:10.12134/j.dzykt.2022.01.016.
[13]
付天池, 叶小舟, 何宝林. 某废弃矿山地质环境治理及生态修复技术研究[J]. 现代矿业, 2020, 36(12):230-233.
FU T C, YE X Z, HE B L. Study on geological environment treatment and ecological restoration technology of an abandoned mine[J]. Mod Min, 2020, 36(12):230-233.DOI:10.3969/j.issn.1674-6082.2020.12.071.
[14]
曹振, 丁文博. 辽宁省矿山开采损毁土地现状与复垦措施研究[J]. 国土资源, 2010(11):54-55.
CAO Z, DING W B. Study on the present situation and reclamation measures of mining damaged land in Liaoning Province[J]. Land & Resour, 2010(11):54-55.DOI:10.3969/j.issn.1671-1904.2010.11.023.
[15]
胡亮, 贺治国. 矿山生态修复技术研究进展[J]. 矿产保护与利用, 2020, 40(4):40-45.
HU L, HE Z G. Research progress of ecological restoration technology in mines[J]. Conserv Util Miner Resour, 2020, 40(4):40-45.DOI:10.13779/j.cnki.issn1001-0076.2020.04.006.
[16]
郭东升, 张显. 客土喷播技术在矿山地质环境治理中的应用[J]. 中国环境管理干部学院学报, 2016, 26(1):86-89.
GUO D S, ZHANG X. The application of Ketu spray seeding technology in mine geological environment treatment[J]. J Environ Manag Coll China, 2016, 26(1):86-89.DOI:10.13358/j.issn.1008-813x.2016.01.24.
[17]
肖利萍, 高小雨, 丁蕊, 等. 膨润土复合吸附剂中碱性材料筛选及对酸性矿山废水处理[J]. 非金属矿, 2013, 36(5):60-63.
XIAO L P, GAO X Y, DING R, et al. Selection of the basic refractories in bentonite composite granule adsorbent for treating acid mine drainage[J]. Non Met Mines, 2013, 36(5):60-63.DOI:10.3969/j.issn.1000-8098.2013.05.021.
[18]
MOHAN D, PITTMAN C U Jr. Arsenic removal from water/wastewater using adsorbents: a critical review[J]. J Hazard Mater, 2007, 142(1/2):1-53.DOI:10.1016/j.jhazmat.2007.01.006.
[19]
TONG L, FAN R G, YANG S C, et al. Development and status of the treatment technology for acid mine drainage[J]. Min Metall Explor, 2021, 38(1):315-327.DOI:10.1007/s42461-020-00298-3.
[20]
CHEN F, YAO Q, TIAN J Y. Review of ecological restoration technology for mine tailings in China[J]. Eng Rev, 2016, 36(2):115-121.
[21]
FELLET G, MARCHIOL L, DELLE VEDOVE G, et al. Application of biochar on mine tailings:effects and perspectives for land reclamation[J]. Chemosphere, 2011, 83(9):1262-1267.DOI:10.1016/j.chemosphere.2011.03.053.
[22]
胡振琪, 杨秀红, 鲍艳, 等. 论矿区生态环境修复[J]. 科技导报, 2005, 23(1):38-41.
HU Z Q, YANG X H, BAO Y, et al. On the restoration of mine eco-environment[J]. Sci & Technol Rev, 2005, 23(1):38-41.
[23]
ASENSIO V, VEGA F A, SINGH B R, et al. Effects of tree vegetation and waste amendments on the fractionation of Cr,Cu,Ni,Pb and Zn in polluted mine soils[J]. Sci Total Environ, 2013, 443:446 453.DOI:10.1016/j.scitotenv.2012.09.069.
[24]
WANG L, JI B, HU Y H, et al. A review on in situ phytoremediation of mine tailings[J]. Chemosphere, 2017, 184:594-600.DOI:10.1016/j.chemosphere.2017.06.025.
[25]
张庆泉. 重金属污染土壤淋洗修复技术研究进展[J]. 山西化工, 2022, 42(3):60-61,112.
ZHANG Q Q. Research progress in leaching remediation of heavy metal contaminated soil[J]. Shanxi Chem Ind, 2022, 42(3):60-61,112.DOI:10.16525/j.cnki.cn14-1109/tq.2022.03.025.
[26]
SUN W, JI B, KHOSO S A, et al. An extensive review on restoration technologies for mining tailings[J]. Environ Sci Pollut Res, 2018, 25(34):33911-33925.DOI:10.1007/s11356-018-3423-y.
[27]
PU L M, LI Z, JIA M Y, et al. Effects of a soil collembolan on the growth and metal uptake of a hyperaccumulator:modification of root morphology and the expression of plant defense genes[J]. Environ Pollut, 2022, 303:119169.DOI:10.1016/j.envpol.2022.119169.
[28]
PULFORD I D, WATSON C. Phytoremediation of heavy metal-contaminated land by trees: a review[J]. Environ Int, 2003, 29(4):529-540.DOI:10.1016/S0160-4120(02)00152-6.
[29]
ANGST G, ANGST Š, FROUZ J, et al. Preferential degradation of leaf- vs.root-derived organic carbon in earthworm-affected soil[J]. Geoderma, 2020, 372:114391.DOI:10.1016/j.geoderma.2020.114391.
[30]
HE X, ZHANG Y X, SHEN M C, et al. Effect of vermicomposting on concentration and speciation of heavy metals in sewage sludge with additive materials[J]. Bioresour Technol, 2016, 218:867-873.DOI:10.1016/j.biortech.2016.07.045.
[31]
李永庚, 蒋高明. 矿山废弃地生态重建研究进展[J]. 生态学报, 2004, 24(1):95-100.
LI Y G, JIANG G M. Ecological restoration of mining wasteland in both China and abroad: an over review[J]. Acta Ecol Sin, 2004, 24(1):95-100.DOI:10.3321/j.issn:1000-0933.2004.01.015.
[32]
刘紫薇. 不同微生物菌剂对矿区复垦地土壤基质改良效果的研究[D]. 阜新: 辽宁工程技术大学, 2021.
LIU Z W. Effect of different microbial agents on soil matrix improvement of reclaimed land in mining area[D]. Fuxin:Liaoning Technical University, 2021.
[33]
UROZ S, CALVARUSO C, TURPAULT M P, et al. Mineral weathering by bacteria:ecology,actors and mechanisms[J]. Trends Microbiol, 2009, 17(8):378-387.DOI:10.1016/j.tim.2009.05.004.
[34]
MAPELLI F, MARASCO R, BALLOI A, et al. Mineral-microbe interactions:biotechnological potential of bioweathering[J]. J Biotechnol, 2012, 157(4):473-481.DOI:10.1016/j.jbiotec.2011.11.013.
[35]
FARHAT M B, FARHAT A, BEJAR W, et al. Characterization of the mineral phosphate solubilizing activity of Serratia marcescens CTM 50650 isolated from the phosphate mine of Gafsa[J]. Arch Microbiol, 2009, 191(11):815-824.DOI:10.1007/s00203-009-0513-8.
[36]
BRUCKER E, KERNCHEN S, SPOHN M. Release of phosphorus and silicon from minerals by soil microorganisms depends on the availability of organic carbon[J]. Soil Biol Biochem, 2020, 143:107737.DOI:10.1016/j.soilbio.2020.107737.
[37]
WU Y W, ZHANG J C, GUO X P. An indigenous soil bacterium facilitates the mitigation of rocky desertification in carbonate mining areas[J]. Land Degrad Develop, 2017, 28(7):2222-2233.DOI:10.1002/ldr.2749.
[38]
WU Y W, ZHANG J C, GUO X P, et al. Isolation and characterisation of a rock solubilising fungus for application in mine-spoil reclamation[J]. Eur J Soil Biol, 2017, 81:76-82.DOI:10.1016/j.ejsobi.2017.06.011.
[39]
SATTAR A, NAVEED M, ALI M, et al. Perspectives of potassium solubilizing microbes in sustainable food production system: a review[J]. Appl Soil Ecol, 2019, 133:146-159.DOI:10.1016/j.apsoil.2018.09.012.
[40]
GOPALAKRISHNAN S, SRINIVAS V, SAMINENI S. Nitrogen fixation,plant growth and yield enhancements by diazotrophic growth-promoting bacteria in two cultivars of chickpea (Cicer arietinum L.)[J]. Biocatal Agric Biotechnol, 2017, 11:116-123.DOI:10.1016/j.bcab.2017.06.012.
[41]
YU H, LIU X Y, YANG C, et al. Co-symbiosis of arbuscular mycorrhizal fungi (AMF) and diazotrophs promote biological nitrogen fixation in mangrove ecosystems[J]. Soil Biol Biochem, 2021, 161:108382.DOI:10.1016/j.soilbio.2021.108382.
[42]
TABASSUM B, KHAN A, TARIQ M, et al. Bottlenecks in commercialisation and future prospects of PGPR[J]. Appl Soil Ecol, 2017, 121:102-117.DOI:10.1016/j.apsoil.2017.09.030.
[43]
LINDSTRÖM K, MOUSAVI S A. Effectiveness of nitrogen fixation in rhizobia[J]. Microb Biotechnol, 2020, 13(5):1314-1335.DOI:10.1111/1751-7915.13517.
[44]
NADEEM S M, AHMAD M, ZAHIR Z A, et al. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments[J]. Biotechnol Adv, 2014, 32(2):429-448.DOI:10.1016/j.biotechadv.2013.12.005.
[45]
FRENCH K E. Engineering mycorrhizal symbioses to alter plant metabolism and improve crop health[J]. Front Microbiol, 2017, 8:1403.DOI:10.3389/fmicb.2017.01403.
[46]
COBAN O, DE DEYN G B, VAN DER PLOEG M. Soil microbiota as game-changers in restoration of degraded lands[J]. Science, 2022, 375(6584):abe0725.DOI:10.1126/science.abe0725.
[47]
RIAZ M, KAMRAN M, FANG Y Z, et al. Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: a critical review[J]. J Hazard Mater, 2021, 402:123919.DOI:10.1016/j.jhazmat.2020.123919.
[48]
BRUNDRETT M C. Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis[J]. Plant Soil, 2009, 320(1):37-77.DOI:10.1007/s11104-008-9877-9.
[49]
WANG W X, SHI J C, XIE Q J, et al. Nutrient exchange and regulation in arbuscular mycorrhizal symbiosis[J]. Mol Plant, 2017, 10(9):1147-1158.DOI:10.1016/j.molp.2017.07.012.
[50]
WU S L, LIU Y J, SOUTHAM G, et al. Geochemical and mineralogical constraints in iron ore tailings limit soil formation for direct phytostabilization[J]. Sci Total Environ, 2019, 651:192-202.DOI:10.1016/j.scitotenv.2018.09.171.
[51]
吴雁雯, 张金池, 郭晓平, 等. 应用于矿山修复的高效菌株鉴定与溶岩机制:基于增强回归树分析[J]. 环境科学, 2017, 38(1):283-293.
WU Y W, ZHANG J C, GUO X P, et al. Identification of efficient strain applied to mining rehabilitation and its rock corrosion mechanism: based on boosted regression tree analysis[J]. Environ Sci, 2017, 38(1):283-293.DOI:10.13227/j.hjkx.201607075.
[52]
王丽, 张金池, 梦莉, 等. 土壤菌对植被生长及喷播基质物理结构的影响[J]. 水土保持学报, 2011, 25(2):144-147,152.
WANG L, ZHANG J C, MENG L, et al. Effects of soil fungi on vegetation growth and physical structural of spray seeding matrix[J]. J Soil Water Conserv, 2011, 25(2):144-147,152.DOI:10.13870/j.cnki.stbcxb.2011.02.001.
[53]
WU Y W, ZHANG J C, WANG L J, et al. A rock-weathering bacterium isolated from rock surface and its role in ecological restoration on exposed carbonate rocks[J]. Ecol Eng, 2017, 101:162-169.DOI:10.1016/j.ecoleng.2017.01.023.
[54]
LIAN B, CHEN Y, ZHU L J, et al. Effect of microbial weathering on carbonate rocks[J]. Earth Sci Front, 2008, 15(6):90-99.DOI:10.1016/S1872-5791(09)60009-9.
[55]
SIX J, BOSSUYT H, DEGRYZE S, et al. A history of research on the link between (micro)aggregates,soil biota,and soil organic matter dynamics[J]. Soil Tillage Res, 2004, 79(1):7-31.DOI:10.1016/j.still.2004.03.008.
[56]
RASHID M I, MUJAWAR L H, SHAHZAD T, et al. Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils[J]. Microbiol Res, 2016, 183:26-41.DOI:10.1016/j.micres.2015.11.007.
[57]
RILLIG M C. Arbuscular mycorrhizae,glomalin,and soil aggregation[J]. Can J Soil Sci, 2004, 84(4):355-363.DOI:10.4141/s04-003.
[58]
REQUENA N, PEREZ-SOLIS E, AZCÓN-AGUILAR C, et al. Management of indigenous plant-microbe symbioses aids restoration of desertified ecosystems[J]. Appl Environ Microbiol, 2001, 67(2):495-498.DOI:10.1128/AEM.67.2.495-498.2001.
[59]
TISDALL J M, OADES J M. Organic matter and water-stable aggregates in soils[J]. J Soil Sci, 1982, 33(2):141-163.DOI:10.1111/j.1365-2389.1982.tb01755.x.
[60]
BLANKINSHIP J C, FONTE S J, SIX J, et al. Plant versus microbial controls on soil aggregate stability in a seasonally dry ecosystem[J]. Geoderma, 2016, 272:39-50.DOI:10.1016/j.geoderma.2016.03.008.
[61]
LI C, JIA Z H, PENG X N, et al. Functions of mineral-solubilizing microbes and a water retaining agent for the remediation of abandoned mine sites[J]. Sci Total Environ, 2021, 761:143215.DOI:10.1016/j.scitotenv.2020.143215.
[62]
LI C, JIA Z H, YUAN Y D, et al. Effects of mineral-solubilizing microbial strains on the mechanical responses of roots and root-reinforced soil in external-soil spray seeding substrate[J]. Sci Total Environ, 2020, 723:138079.DOI:10.1016/j.scitotenv.2020.138079.
[63]
GÖHRE V, PASZKOWSKI U. Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation[J]. Planta, 2006, 223(6):1115-1122.DOI:10.1007/s00425-006-0225-0.
[64]
PULSAWAT W, LEKSAWASDI N, ROGERS P L, et al. Anions effects on biosorption of Mn(II) by extracellular polymeric substance (EPS) from Rhizobium etli[J]. Biotechnol Lett, 2003, 25(15):1267-1270.DOI:10.1023/a:1025083116343.
[65]
CHRISTIE P, LI X L, CHEN B D. Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc[J]. Plant Soil, 2004, 261(1/2):209-217.DOI:10.1023/B:PLSO.0000035542.79345.1b.
[66]
ZHOU J L. Zn biosorption by Rhizopus arrhizus and other fungi[J]. Appl Microbiol Biotechnol, 1999, 51(5):686-693.DOI:10.1007/s002530051453.
[67]
BRAUD A, JÉZÉQUEL K, VIEILLE E, et al. Changes in extractability of Cr and Pb in a polycontaminated soil after bioaugmentation with microbial producers of biosurfactants,organic acids and siderophores[J]. Water Air Soil Pollut:Focus, 2006, 6(3):261-279.DOI:10.1007/s11267-005-9022-1.
[68]
CHEN H, CUTRIGHT T J. Preliminary evaluation of microbially mediated precipitation of cadmium,chromium,and nickel by rhizosphere consortium[J]. J Environ Eng,2003,129( 1):4-9.DOI:10.1061/(asce)0733-9372(2003)129:1(4).
[69]
GILIS A, CORBISIER P, BAEYENS W, et al. Effect of the siderophore alcaligin E on the bioavailability of Cd to Alcaligenes eutrophus CH34[J]. J Ind Microbiol Biotechnol, 1998, 20(1):61-68.DOI:10.1038/sj.jim.2900478.
[70]
ROUCH D A, LEE B T O, MORBY A P. Understanding cellular responses to toxic agents: a model for mechanism-choice in bacterial metal resistance[J]. J Ind Microbiol, 1995, 14(2):132-141.DOI:10.1007/BF01569895.
[71]
HAFERBURG G, KOTHE E. Microbes and metals: interactions in the environment[J]. J Basic Microbiol, 2007, 47(6):453-467.DOI:10.1002/jobm.200700275.
[72]
DIMKPA C O, MERTEN D, SVATOŠ A, et al. Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores[J]. Soil Biol Biochem, 2009, 41(1):154-162.DOI:10.1016/j.soilbio.2008.10.010.
[73]
SARAVANAN V S, MADHAIYAN M, THANGARAJU M. Solubilization of zinc compounds by the diazotrophic,plant growth promoting bacterium Gluconacetobacter diazotrophicus[J]. Chemosphere, 2007, 66(9):1794-1798.DOI:10.1016/j.chemosphere.2006.07.067.
[74]
MA Y, PRASAD M N V, RAJKUMAR M, et al. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils[J]. Biotechnol Adv, 2011, 29(2):248-258.DOI:10.1016/j.biotechadv.2010.12.001.
[75]
SCHÜTZENDÜBEL A, POLLE A. Plant responses to abiotic stresses:heavy metal-induced oxidative stress and protection by mycorrhization[J]. J Exp Bot, 2002, 53(372):1351-1365.DOI:10.1093/jxb/53.372.1351.
[76]
SHARMA S, ANAND G, SINGH N, et al. Arbuscular mycorrhiza augments arsenic tolerance in wheat (Triticum aestivum L.) by strengthening antioxidant defense system and thiol metabolism[J]. Front Plant Sci, 2017, 8:906.DOI:10.3389/fpls.2017.00906.
[77]
JANEESHMA E, PUTHUR J T. Direct and indirect influence of arbuscular mycorrhizae on enhancing metal tolerance of plants[J]. Arch Microbiol, 2020, 202(1):1-16.DOI:10.1007/s00203-019-01730-z.
[78]
ZHAN F D, LI B, JIANG M, et al. Arbuscular mycorrhizal fungi enhance antioxidant defense in the leaves and the retention of heavy metals in the roots of maize[J]. Environ Sci Pollut Res, 2018, 25(24):24338-24347.DOI:10.1007/s11356-018-2487-z.
[79]
WANG Y P, HUANG J, GAO Y Z. Arbuscular mycorrhizal colonization alters subcellular distribution and chemical forms of cadmium in Medicago sativa L.and resists cadmium toxicity[J]. PLoS One, 2012, 7(11):e48669.DOI:10.1371/journal.pone.0048669.
[80]
NORDSTROM D K, BLOWES D W, PTACEK C J. Hydrogeochemistry and microbiology of mine drainage: an update[J]. Appl Geochem, 2015, 57:3-16.DOI:10.1016/j.apgeochem.2015.02.008.
[81]
AKCIL A, KOLDAS S. Acid mine drainage (AMD):causes,treatment and case studies[J]. J Clean Prod, 2006, 14(12/13):1139-1145.DOI:10.1016/j.jclepro.2004.09.006.
[82]
FERNANDO W A M, ILANKOON I M S K, SYED T H, et al. Challenges and opportunities in the removal of sulphate ions in contaminated mine water:a review[J]. Miner Eng, 2018, 117:74-90.DOI:10.1016/j.mineng.2017.12.004.
[83]
MOODLEY I, SHERIDAN C M, KAPPELMEYER U, et al. Environmentally sustainable acid mine drainage remediation: research developments with a focus on waste/by-products[J]. Miner Eng, 2018, 126:207-220.DOI:10.1016/j.mineng.2017.08.008.
[84]
CASTRO H F, WILLIAMS N H, OGRAM A. Phylogeny of sulfate-reducing bacteria[J]. FEMS Microbiol Ecol, 2000, 31(1):1-9.DOI:10.1016/S0168-6496(99)00071-9.
[85]
PANDA S, MISHRA S, AKCIL A. Bioremediation of acidic mine effluents and the role of sulfidogenic biosystems: a mini-review[J]. Euro-Mediterr J Environ Integr, 2016, 1(1):8.DOI:10.1007/s41207-016-0008-3.
[86]
RUEHL M D, HIIBEL S R. Evaluation of organic carbon and microbial inoculum for bioremediation of acid mine drainage[J]. Miner Eng, 2020, 157:106554.DOI:10.1016/j.mineng.2020.106554.
[87]
SHU W S, HUANG L N. Microbial diversity in extreme environments[J]. Nat Rev Microbiol, 2022, 20(4):219-235.DOI:10.1038/s41579-021-00648-y.
[88]
IGHALO J O, KURNIAWAN S B, IWUOZOR K O, et al. A review of treatment technologies for the mitigation of the toxic environmental effects of acid mine drainage (AMD)[J]. Process Saf Environ Prot, 2022, 157:37-58.DOI:10.1016/j.psep.2021.11.008.
[89]
ZHU J, ZHANG P, YUAN S H, et al. Arsenic oxidation and immobilization in acid mine drainage in Karst areas[J]. Sci Total Environ, 2020, 727:138629.DOI:10.1016/j.scitotenv.2020.138629.
[90]
PURWANTI I F, OBENU A, TANGAHU B V, et al. Bioaugmentation of Vibrio alginolyticus in phytoremediation of aluminium-contaminated soil using Scirpus grossus and Thypa angustifolia[J]. Heliyon, 2020, 6(9):e05004.DOI:10.1016/j.heliyon.2020.e05004.
[91]
GUITTONNY-LARCHEVÊQUE M, BUSSIÈRE B, PEDNAULT C. Tree-substrate water relations and root development in tree plantations used for mine tailings reclamation[J]. J Environ Qual, 2016, 45(3):1036-1045.DOI:10.2134/jeq2015.09.0477.
[92]
SIMARD S W, BEILER K J, BINGHAM M A, et al. Mycorrhizal networks: mechanisms,ecology and modelling[J]. Fungal Biol Rev, 2012, 26(1):39-60.DOI:10.1016/j.fbr.2012.01.001.
[93]
WU Q S, SRIVASTAVA A K, ZOU Y N. AMF-induced tolerance to drought stress in citrus: a review[J]. Sci Hortic, 2013, 164:77-87.DOI:10.1016/j.scienta.2013.09.010.
[94]
DE DORLODOT S, FORSTER B, PAGÈS L, et al. Root system architecture: opportunities and constraints for genetic improvement of crops[J]. Trends Plant Sci, 2007, 12(10):474-481.DOI:10.1016/j.tplants.2007.08.012.
[95]
MAIQUETÍA M, CÁCERES A, HERRERA A. Mycorrhization and phosphorus nutrition affect water relations and CAM induction by drought in seedlings of Clusia minor[J]. Ann Bot, 2008, 103(3):525-532.DOI:10.1093/aob/mcn238.
[96]
ASMELASH F, BEKELE T, BIRHANE E. The potential role of arbuscular mycorrhizal fungi in the restoration of degraded lands[J]. Front Microbiol, 2016, 7:1095.DOI:10.3389/fmicb.2016.01095.
[97]
KAPILAN R, VAZIRI M, ZWIAZEK J J. Regulation of aquaporins in plants under stress[J]. Biol Res, 2018, 51(1):4.DOI:10.1186/s40659-018-0152-0.
[98]
HE F, ZHANG H Q, TANG M. Aquaporin gene expression and physiological responses of Robinia pseudoacacia L.[J]. Mycorrhiza, 2016, 26(4):311-323.DOI:10.1007/s00572-015-0670-3.
[99]
SCHAUMANN G E, BRAUN B, KIRCHNER D, et al. Influence of biofilms on the water repellency of urban soil samples[J]. Hydrol Process, 2007, 21(17):2276-2284.DOI:10.1002/hyp.6746.
[100]
OR D, PHUTANE S, DECHESNE A. Extracellular polymeric substances affecting pore-scale hydrologic conditions for bacterial activity in unsaturated soils[J]. Vadose Zone J, 2007, 6(2):298-305.DOI:10.2136/vzj2006.0080.
[101]
HENAO L J, MAZEAU K. Molecular modelling studies of clay-exopolysaccharide complexes: soil aggregation and water retention phenomena[J]. Mater Sci Eng C, 2009, 29(8):2326-2332.DOI:10.1016/j.msec.2009.06.001.
[102]
GUO Y S, FURRER J M, KADILAK A L, et al. Bacterial extracellular polymeric substances amplify water content variability at the pore scale[J]. Front Environ Sci, 2018, 6:93.DOI:10.3389/fenvs.2018.00093.
[103]
OR D, SMETS B F, WRAITH J M, et al. Physical constraints affecting bacterial habitats and activity in unsaturated porous media-a review[J]. Adv Water Resour, 2007, 30(6/7):1505-1527.DOI:10.1016/j.advwatres.2006.05.025.
[104]
CRUZ B C, FURRER J M, GUO Y, et al. Pore-scale water dynamics during drying and the impacts of structure and surface wettability[J]. Water Resour Res, 2017, 53(7):5585-5600.DOI:10.1002/2016wr019862.
[105]
GEORGE D B, ROUNDY B A, ST CLAIR L L, et al. The effects of microbiotic soil crustson soil water loss[J]. Arid Land Res Manag, 2003, 17(2):113-125.DOI:10.1080/15324980301588.
[106]
PORCEL R, AROCA R, RUIZ-LOZANO J M. Salinity stress alleviation using arbuscular mycorrhizal fungi[J]. Agron Sustain Dev, 2012, 32(1):181-200.DOI:10.1007/s13593-011-0029-x.
[107]
VÍLCHEZ J I, GARCÍA-FONTANA C, ROMÁN-NARANJO D, et al. Plant drought tolerance enhancement by trehalose production of desiccation-tolerant microorganisms[J]. Front Microbiol, 2016, 7:1577.DOI:10.3389/fmicb.2016.01577.
[108]
WOODCOCK S D, SYSON K, LITTLE R H, et al. Trehalose and α-glucan mediate distinct abiotic stress responses in Pseudomonas aeruginosa[J]. PLoS Genet, 2021, 17(4):e1009524.DOI:10.1371/journal.pgen.1009524.
[109]
KANG S M, RADHAKRISHNAN R, KHAN A L, et al. Gibberellin secreting rhizobacterium,Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions[J]. Plant Physiol Biochem, 2014, 84:115-124.DOI:10.1016/j.plaphy.2014.09.001.
[110]
RAHEEM A, SHAPOSHNIKOV A, BELIMOV A A, et al. Auxin production by rhizobacteria was associated with improved yield of wheat (Triticum aestivum L.) under drought stress[J]. Arch Agron Soil Sci, 2018, 64(4):574-587.DOI:10.1080/03650340.2017.1362105.
[111]
SATI D, PANDE V, PANDEY S C, et al. Recent advances in PGPR and molecular mechanisms involved in drought stress resistance[J]. J Soil Sci Plant Nutr, 2022:1-19.DOI:10.1007/s42729-021-00724-5.
[112]
ABBASPOUR H, SAEIDI-SAR S, AFSHARI H, et al. Tolerance of mycorrhiza infected pistachio (Pistacia vera L.) seedling to drought stress under glasshouse conditions[J]. J Plant Physiol, 2012, 169(7):704-709.DOI:10.1016/j.jplph.2012.01.014.
[113]
NARAYANASAMY S, THANGAPPAN S, UTHANDI S. Plant growth-promoting Bacillus sp.cahoots moisture stress alleviation in rice genotypes by triggering antioxidant defense system[J]. Microbiol Res, 2020, 239:126518.DOI:10.1016/j.micres.2020.126518.
[114]
FENG Y, WANG J M, BAI Z K, et al. Three-dimensional quantification of macropore networks of different compacted soils from opencast coal mine area using X-ray computed tomography[J]. Soil Tillage Res, 2020, 198:104567.DOI:10.1016/j.still.2019.104567.
[115]
MIRANSARI M. Corn (Zea mays L.) growth as affected by soil compaction and arbuscular mycorrhizal fungi[J]. J Plant Nutr, 2013, 36(12):1853-1867.DOI:10.1080/01904167.2013.816729.
[116]
RILLIG M C, MUMMEY D L. Mycorrhizas and soil structure[J]. New Phytol, 2006, 171(1):41-53.DOI:10.1111/j.1469-8137.2006.01750.x.
[117]
POLANCO M C, ZWIAZEK J J, VOICU M C. Responses of ectomycorrhizal American elm (Ulmus)[J]. Plant Soil, 2008, 308(1):189-200.DOI:10.1007/s11104-008-9619-z.
[118]
MAWARDA P C, LE ROUX X, DIRK VAN ELSAS J, et al. Deliberate introduction of invisible invaders: a critical appraisal of the impact of microbial inoculants on soil microbial communities[J]. Soil Biol Biochem, 2020, 148:107874.DOI:10.1016/j.soilbio.2020.107874.
[119]
KURKJIAN H M, AKBARI M J, MOMENI B. The impact of interactions on invasion and colonization resistance in microbial communities[J]. PLoS Comput Biol, 2021, 17(1):e1008643.DOI:10.1371/journal.pcbi.1008643.
[120]
MALLON C A, LE ROUX X, VAN DOORN G S, et al. The impact of failure:unsuccessful bacterial invasions steer the soil microbial community away from the invader’s niche[J]. ISME J, 2018, 12(3):728-741.DOI:10.1038/s41396-017-0003-y.
[121]
MOORE J A M, ABRAHAM P E, MICHENER J K, et al. Ecosystem consequences of introducing plant growth promoting rhizobacteria to managed systems and potential legacy effects[J]. New Phytol, 2022, 234(6):1914-1918.DOI:10.1111/nph.18010.
[122]
CHEN C, WANG M, ZHU J Z, et al. Long-term effect of epigenetic modification in plant-microbe interactions: modification of DNA methylation induced by plant growth-promoting bacteria mediates promotion process[J]. Microbiome, 2022, 10(1):36.DOI:10.1186/s40168-022-01236-9.
[123]
HASKETT T L, TKACZ A, POOLE P S. Engineering rhizobacteria for sustainable agriculture[J]. ISME J, 2021, 15(4):949-964.DOI:10.1038/s41396-020-00835-4.
[124]
MEYER G, BÜNEMANN E K, FROSSARD E, et al. Gross phosphorus fluxes in a calcareous soil inoculated with Pseudomonas protegens CHA0 revealed by 33P isotopic dilution[J]. Soil Biol Biochem, 2017, 104:81-94.DOI:10.1016/j.soilbio.2016.10.001.
[125]
RAYMOND N S, GÓMEZ-MUÑOZ B, VAN DER BOM F J T, et al. Phosph-ate-solubilising microorganisms for improved crop productivity: a critical assessment[J]. New Phytol, 2021, 229(3):1268-1277.DOI:10.1111/nph.16924.
[126]
UROZ S, PICARD L, TURPAULT M P. Recent progress in understanding the ecology and molecular genetics of soil mineral weathering bacteria[J]. Trends Microbiol, 2022, 30(9):882-897. DOI:10.1016/j.tim.2022.01.019.
PDF(4066 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/