Plant hormones and metabolites response to feeding stimulation by pine caterpillar (Dendrolimus tabulaeformis) and leaf clipping control in Chinese pine (Pinus tabuliformis)

ZHAO Ya’nan, SUN Tianhua, WANG Lifeng, XU Qiang, LIU Junxia, GAO Baojia, ZHOU Guona

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (1) : 219-226.

PDF(1817 KB)
PDF(1817 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (1) : 219-226. DOI: 10.12302/j.issn.1000-2006.202206014

Plant hormones and metabolites response to feeding stimulation by pine caterpillar (Dendrolimus tabulaeformis) and leaf clipping control in Chinese pine (Pinus tabuliformis)

Author information +
History +

Abstract

【Objective】This experiment was conducted with the aim of defining changes in metabolic pathways in response to mandibulate insect feeding and providing references for the growth and protection of Chinese pine (Pinus tabuliformis).【Method】Pure P. tabuliformis forest in good growth status in Huangtuliangzi Forest Farm of Pingquan City, Chengde City, Hebei Province was the experimental field. Branches with consistent branch length and height above the ground in four directions were stimulated by ten pine caterpillars (Dendrolimus tabulaeformis) for feeding stimulation and leaf clipping control for mechanical damage. The pine needles were collected 3 cm below the chewing or cutting sites. The CK group received no treatment (0 h, recorded as 0 h), and 10 intact pine needles were collected. Metabolome and total flavonoid contents were measured in the needles at 0, 2 and 8 h after the different treatment modes. The plant hormones JA, SA, IAA and ABA were measured using needles at 0, 0.5, 1.0, 1.5, 2.0, 4.0, 6.0, and 8.0 h after different treatments.【Result】Analysis of metabolomics showed that the top three pathways mainly annotated and enriched for DAMs compared to 2.0 h after FS and LCC are flavonoid biosynthesis, amino acid metabolism, and arginine and proline metabolism; the top three pathways mainly annotated and enriched for DAMs compared to 8.0 h after FS and LCC are flavonoid biosynthesis, linoleic acid metabolism, and flavonoid and flavonol biosynthesis. Thus, D. tabulaeformis feeding stimulation can significantly induce the upregulation of flavonoid expression at the chewing sites of needles when compared to the leaf clipping control. The plant hormones, JA and IAA, showed expression trends consistent with those of the corresponding substances in the metabolome. A significant positive correlation between JA and SA, JA and IAA and IAA and ABA (P< 0.05) was observed. 【Conclusion】Thus, the flavonoid pathway is one of the main pathways involved in resistant formation in conifers. Simple damage mechanisms did not induce significant differences in JA, IAA and ABA; thus, JA, IAA and ABA are involved in the development of resistance and growth during biotic stress.

Key words

Pinus tabuliformis / Dendrolimus tabulaeformis / feeding stimulation / induced resistant / plant hormone / flavonoid pathway / metabolome

Cite this article

Download Citations
ZHAO Ya’nan , SUN Tianhua , WANG Lifeng , et al . Plant hormones and metabolites response to feeding stimulation by pine caterpillar (Dendrolimus tabulaeformis) and leaf clipping control in Chinese pine (Pinus tabuliformis)[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(1): 219-226 https://doi.org/10.12302/j.issn.1000-2006.202206014

References

[1]
窦宏双, 梁晓, 陈青, 等. 二斑叶螨为害前后抗、感木薯转录组分析及水杨酸、茉莉酸途径差异表达基因验证[J]. 热带作物学报, 2021, 42(11): 3146-3155.
DOU H S, LIANG X, CHEN Q, et al. Transcriptome analysis of resistant and susceptible cassava infested by Tetranychus urticae and verification of differentially expressed genes in salicylic acid and jasmonic acid pathways[J]. Chin J Trop Crops, 2021, 42(11):3146-3155. DOI:10.3969/j.issn.1000-2561.2021.11.013.
[2]
黄双杰, 曹梦珍, 陈凌芝, 等. 氮素胁迫条件下茶树根系发育及生长素的响应[J]. 江苏农业学报, 2023, 39(3):814-821.
HUANG S J, CAO M Z, CHEN L Z, et al. Auxin response and tea plant roots formation regulated by nitrogen stress[J]. Jiangsu J Agri Sci, 2023, 39(3):814-821.DOI: 10.3969/j.issn.1000-4440.2023.03.023.
[3]
BHARATH P, GAHIR S, RAGHAVENDRA A S. Abscisic acid-induced stomatal closure: an important component of plant defense against abiotic and biotic stress[J]. Front Plant Sci, 2021, 12:615114. DOI:10.3389/fpls.2021.615114.
[4]
OU X B, LI T Q, ZHAO Y, et al. Calcium-dependent ABA signaling functions in stomatal immunity by regulating rapid SA responses in guard cells[J]. J Plant Physiol, 2022, 268:153585.DOI:10.1016/j.jplph.2021.153585.
[5]
赵利, 钞建宾, 郭捷, 等. 基于代谢组学技术的植物抗病相关代谢物研究进展[J]. 西北植物学报, 2021, 41(6):1071-1078.
ZHAO L, CHAO J B, GUO J, et al. Study on plant resistance-related metabolites against pathogenic fungi based on metabolomics[J]. Acta Bot Boreali Occidentalia Sin, 2021, 41(6):1071-1078. DOI:10.7606/j.issn.1000-4025.2021.06.1071.
[6]
RIVAS-UBACH A, SARDANS J, HÓDAR J A, et al. Similar local,but different systemic, metabolomic responses of closely related pine subspecies to folivory by caterpillars of the processionary moth[J]. Plant Biol, 2016, 18(3):484-494. DOI:10.1111/plb.12422.
[7]
张佳松. 甘蔗响应黏虫取食的代谢组学分析[D]. 福州: 福建农林大学, 2020.
ZHANG J S. The metabolomics analysis of sugarcane in response of oriential armworm Mythimna separate feeding[D]. Fuzhou: Fujian Agriculture and Forestry University, 2020.
[8]
张强, 周鹏, 刘昌来, 等. NaCl处理下全缘冬青和红果冬青根系的转录组活性比较[J]. 南京林业大学学报(自然科学版), 2022, 46(3): 99-108.
ZHANG Q, ZHOU P, LIU C L, et al. Comparison of transcriptomic activity of Ilex integra and I. purpurea roots with NaCl treatments[J]. J Nanjing For Univ (Nat Sci Ed), 2022, 46(3): 99-108. DOI: 10.12302/j.issn.1000-2006.202109054.
[9]
张斌, 高宝嘉, 刘洋. 剪叶和取食刺激对油松体内几种防御酶的活性及其动态的影响[J]. 生态科学, 2017, 36(1):118-122.
ZHANG B, GAO B J, LIU Y. The effects of leaf-cutting and feeding stimulation on the activities and dynamic of defense enzymes in Chinese pine[J]. Ecol Sci, 2017, 36(1):118-122. DOI:10.14108/j.cnki.1008-8873.2017.01.016.
[10]
石媛媛, 冯金周, 于连海, 等. 昆虫取食和剪叶刺激对油松针叶内部分防御物质的诱导效应[J]. 河北农业大学学报, 2017, 40(1):81-86.
SHI Y Y, FENG J Z, YU L H, et al. The inducing effect of insect feeding and leaf cutting on some defensive substance in Chinese pine(Pinus tabulaeformis)needle[J]. J Agric Univ Hebei, 2017, 40(1):81-86. DOI:10.13320/j.cnki.jauh.2017.0015.
[11]
王银翠, 周国娜, 张斌, 等. 油松毛虫取食和剪叶刺激胁迫下油松的蛋白质表达差异分析[J]. 林业科学, 2016, 52(8):68-75.
WANG Y C, ZHOU G N, ZHANG B, et al. Difference in protein expression of Pinus tabulaeformis induced by Dendrolimus tabulaeformis feeding and leaf-cutting stimulation[J]. Sci Silvae Sin, 2016, 52(8):68-75. DOI: 10.11707/j.1001-7488.20160809.
[12]
秦世杰, 祁金玉, 刘仁军, 等. 自然状态下油松感染松材线虫后的生理响应[J]. 沈阳农业大学学报, 2021, 52(5):625-632.
QIN S J, QI J Y, LIU R J, et al. Physiological response of Pinus tabulaeformis infected with Bursaphelenchus xylophilus in natural state[J]. J Shenyang Agric Univ, 2021, 52(5):625-632. DOI: 10.3969/j.issn.1000-1700.2021.05.014.
[13]
NIU S H, LI J, BO W H, et al. The Chinese pine genome and methylome unveil key features of conifer evolution[J]. Cell, 2022, 185(1):204-217e14. DOI:10.1016/j.cell.2021.12.006.
[14]
MA T L, LI W J, HONG Y S, et al. TMT based proteomic profiling of Sophora alopecuroides leaves reveal flavonoid biosynthesis processes in response to salt stress[J]. J Proteom, 2022, 253:104457. DOI:10.1016/j.jprot.2021.104457.
[15]
AHAMMED G J, YANG Y X. Anthocyanin-mediated arsenic tolerance in plants[J]. Environ Pollut, 2022, 292:118475. DOI:10.1016/j.envpol.2021.118475.
[16]
LIU S H, FANG S, LIU C L, et al. Transcriptomics integrated with metabolomics reveal the effects of ultraviolet-B radiation on flavonoid biosynthesis in Antarctic moss[J]. Front Plant Sci, 2021, 12:788377. DOI:10.3389/fpls.2021.788377.
[17]
徐展宏, 朱莹, 金慧颖, 等. 不同叶色青钱柳叶片色素、多酚含量及光合特性的差异[J]. 南京林业大学学报(自然科学版), 2022, 46(2):103-110.
XU Z H, ZHU Y, JIN H Y, et al. Variations in the contents of leaf pigments and polyphenols and photosynthesis traits in Cyclocarya paliurus with different leaf colors[J]. J Nanjing For Univ (Nat Sci Ed), 2022, 46(2):103-110. DOI:10.12302/j.issn.1000-2006.202105048.
[18]
SHI J W, YAN X, SUN T T, et al. Homeostatic regulation of flavonoid and lignin biosynthesis in phenylpropanoid pathway of transgenic tobacco[J]. Gene, 2022, 809:146017. DOI:10.1016/j.gene.2021.146017.
[19]
LIU W X, FENG Y, YU S H, et al. The flavonoid biosynthesis network in plants[J]. Int J Mol Sci, 2021, 22(23):12824. DOI:10.3390/ijms222312824.
[20]
CHEN Z, GUO Z P, NIU J P, et al. Phytotoxic effect and molecular mechanism induced by graphene towards alfalfa (Medicago sativa L.) by integrating transcriptomic and metabolomics analysis[J]. Chemosphere, 2022, 290:133368. DOI:10.1016/j.chemosphere.2021.133368.
[21]
王伟伟. 茶树对茶尺蠖的抗性评价及其抗性机制研究[D]. 武汉: 华中农业大学, 2018.
WANG W W. Resistance evaluation and mechanism of Camellia sinensis response to Ectropis obliqua[D]. Wuhan: Huazhong Agricultural University, 2018.
[22]
SOHN S I, PANDIAN S, RAKKAMMAL K, et al. Jasmonates in plant growth and development and elicitation of secondary metabolites: an updated overview[J]. Front Plant Sci, 2022, 13:942789. DOI:10.3389/fpls.2022.942789.
[23]
WASTERNACK C, STRNAD M. Jasmonates are signals in the biosynthesis of secondary metabolites—pathways, transcription factors and applied aspects—a brief review[J]. New Biotechnol, 2019, 48:1-11. DOI:10.1016/j.nbt.2017.09.007.
[24]
李永华, 肖能文, 刘勇波. 植物防御中茉莉酸信号通路抑制与终止的作用机制[J]. 植物保护学报, 2021, 48(3):563-569.
LI Y H, XIAO N W, LIU Y B. Mechanisms of repression and termination of jasmonate signaling in plant defense[J]. J Plant Prot, 2021, 48(3):563-569. DOI:10.13802/j.cnki.zwbhxb.2021.2020221.
[25]
邓苗苗, 郭晓黎. 植物响应寄生线虫侵染机制的研究进展[J]. 生物技术通报, 2021, 37(7):25-34.
DENG M M, GUO X L. Research progress on plants responses to parasitic nematodes infection[J]. Biotechnol Bull, 2021, 37(7):25-34. DOI:10.13560/j.cnki.biotech.bull.1985.2021-0669.
[26]
叶德友, 漆永红, 李敏权. 植物与线虫互作的信号传导及调控机制研究进展[J]. 草业学报, 2016, 25(10):191-201.
YE D Y, QI Y H, LI M Q. Research progress on signal transduction and regulation mechanisms in plant-nematode interactions[J]. Acta Prataculturae Sin, 2016, 25(10):191-201. DOI:10.11686/cyxb2015574.
[27]
张瑾, 邢玉娴, 韩涛, 等. 茶树诱导抗虫性的研究进展[J]. 昆虫学报, 2022, 65(3):399-408.
ZHANG J, XING Y X, HAN T, et al. Research progress of induced defense against insect pests in tea plant (Camellia sinensis)[J]. Acta Entomol Sin, 2022, 65(3):399-408. DOI:10.16380/j.kcxb.2022.03.014.
[28]
LI R X, SU X Q, ZHOU R, et al. Molecular mechanism of mulberry response to drought stress revealed by complementary transcriptomic and iTRAQ analyses[J]. BMC Plant Biol, 2022, 22(1):36. DOI:10.1186/s12870-021-03410-x.
[29]
HU W, ZHANG J P, YAN K, et al. Beneficial effects of abscisic acid and melatonin in overcoming drought stress in cotton (Gossypium hirsutum L.)[J]. Physiol Plant, 2021, 173(4):2041-2054. DOI:10.1111/ppl.13550.
[30]
丁旭, 黄茜, 邓沁宇, 等. 脱落酸在植物抗虫性中的作用研究进展[J]. 环境昆虫学报, 2019, 41(4):808-813.
DING X, HUANG X, DENG Q Y, et al. Research progress of abscisic acid in plant resistance to pest[J]. J Environ Entomol, 2019, 41(4):808-813. DOI:10.3969/j.issn.1674-0858.
[31]
张吉玲, 李明阳, 李勇, 等. 机械损伤处理杉木无性系萌蘖及内源激素含量差异[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 153-158.
ZHANG J L, LI M Y, LI Y, et al. Effects of mechanical damage treatment on the tillering ability and endogenous hormone content of Chinese fir clones[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(2): 153-158. DOI: 10.12302/j.issn.1000-2006.202006054.
[32]
SMYTHERS A L, BHATNAGAR N, HA C, et al. Abscisic acid-controlled redox proteome of Arabidopsis and its regulation by heterotrimeric Gβ proteins[J]. New Phytol, 2022, 236(2):447-463.DOI: 10.1111/nph.18348.
[33]
岳喜良, 秦健, 洑香香, 等. 氮素水平对青钱柳叶片主要次生代谢物含量和抗氧化能力的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(2): 35-42.
YUE X L, QIN J, FU X X, et al. Effects of nitrogen fertilization on secondary metabolite accumulation and antioxidant capacity of Cycolcurya paliurus (Batal.) Iljinskaja leaves[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(2): 35-42. DOI: 10.3969/j.issn.1000-2006.201904048.
PDF(1817 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/