
Variations in seed morphological characteristics and nutritional content of Castanopsis carlesii from different provenances
SUN Rongxi, PAN Xinhao, ZHONG Xiaoru, LI Guisheng
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (2) : 27-34.
Variations in seed morphological characteristics and nutritional content of Castanopsis carlesii from different provenances
【Objective】 To provide scientific references for germplasm conservation and development and utilization of Castanopsis carlesii, the geographical variations of seed morphological characteristics and nutrient content of C. carlesii from different provenances were analyzed. 【Method】 Seeds of C. carlesii were collected from 357 individuals growing in natural distribution areas of thirteen provenances. Six morphological characteristics (seed length, seed width, length width ratio, volume, surface area and 1 000-seed weight) and nutrients (soluble sugar and starch) of seeds were measured, and then variance, correlation and cluster analyses were conducted.【Result】 Seeds’ morphological characteristics were significantly different between and within provenances (P < 0.01); the mean values of seed length, width, length width ratio, volume, surface area and 1 000-seed weight ranged from 0.93-1.02 cm, 0.82-0.93 cm, 1.07-1.21, 0.32-0.46 cm3, 1.83-2.32 cm2 and 397.15-599.67 g, respectively. The nest analysis of variances showed that the maxima of seed length, width, volume, surface area, and 1 000-seed weight were observed in seeds from Jiangxi Dingnan (JXDN), and significantly differed from those from other provenances. The 1 000-seed weight of Anhui Qimen (AHQM) was 66.23% that of JXDN, and the seed length, width, volume and surface area were comparatively smaller. The percentages of starch and soluble sugar were 31.80% and 21.76%, respectively. The nutrient contents of C. carlesii were significantly different between provenances (P < 0.01); the coefficients of variation were 14.06% and 30.62%. The average coefficient of phenotypic differentiation was 28.15%, and genetic variation within provenances was the main source of the genetic variation of morphology characteristics. The correlation analysis showed that starch and 1 000-seed weight had the most positive correlations with seed width (P < 0.05), while sugar had an extremely significant correlation with seed length and length-width ratios (P < 0.01). Seed length showed a significant negative correlation with longitude (P < 0.05). The length-width ratio showed an extremely significant negative correlation to longitude (P < 0.01), and had significant negative correlation with precipitation during the coldest quarter (P < 0.05). The starch showed a significant correlation to annual mean temperature. The cluster analysis showed that the thirteen provenances could be divided into three groups. Group Ⅰ included JXDN, which possessed large sized seeds, high soluble sugar and high starch. Group Ⅱ included AHQM, Jiangxi Xinfeng (JXXF), Zhejiang Kaihua (ZJKH) and Guangdong Lianping (GDLP), which had small sized seeds, high soluble sugar and low starch groups; the other eight provenances fell into group Ⅲ, exhibiting medium sized seeds, and medium soluble sugar and starch contents. Adjacent provenances did not cluster together preferentially, indicating that there is no obvious geographical variation of C. carlesii.【Conclusion】 The phenotypic diversity of C. carlesii was the result of genetic and environmental factors. In addition, the variation in seeds was mainly influenced by longitude, annual mean temperature, and precipitation of the coldest quarter. The genetic variation within provenances was the main source of genetic variations of seed characteristics; therefore, the selection and utilization of superior individual plants should be strengthened in the genetic improvement of C. carlesii. JXDN has the characteristics of large seeds and high nutrition, and offers the potential for excellent provenances.
Castanopsis carlesii / seed / morphological characteristic / nutritional content / provenance
[1] |
方燕鸿. 武夷山米槠、甜槠常绿阔叶林的物种组成及多样性分析[J]. 生物多样性, 2005, 13(2):148-155.
|
[2] |
罗坤水, 杨春霞, 林小凡, 等. 壳斗科树种育苗技术研究[J]. 江西林业科技, 2008, 36(6):6-9.
|
[3] |
曹展波, 林小凡, 杨桦, 等. 米槠人工培育技术[J]. 南方林业科学, 2015, 43(2):17-19.
|
[4] |
黄文标. 米槠容器扦插繁殖技术试验研究[J]. 内蒙古林业调查设计, 2015, 38(5):56-58.
|
[5] |
康建生. 米槠生物量空间结构特征的研究[J]. 江西林业科技, 2011, 39(3):33-35.
|
[6] |
李丽婷. 皆伐对一代和二代人促米槠林分特征的影响[J]. 山地学报, 2004, 22(3):310-314.
|
[7] |
|
[8] |
李伟, 刘小飞, 陈光水, 等. 凋落物对中亚热带米槠天然林和人工林土壤呼吸的影响[J]. 林业科学, 2016, 52(11):11-18.
|
[9] |
张建和. 福建木兰溪源自然保护区米槠群落凋落物热值及能量归还动态[J]. 福建农业学报, 2016, 31(2):194-198.
|
[10] |
胡双成, 熊德成, 黄锦学, 等. 福建三明米槠次生林在不同更新方式下的初期细根产量[J]. 应用生态学报, 2015, 26(11):3259-3267.
|
[11] |
陈云玉, 熊德成, 黄锦学, 等. 中亚热带不同演替阶段的马尾松和米槠人工林的细根生产量研究[J]. 植物生态学报, 2015, 39(11):1071-1081.
|
[12] |
熊德成, 黄锦学, 陈光水, 等. 中亚热带米槠和杉木细根分泌物研究初报[J]. 亚热带资源与环境学报, 2015, 10(1):83-86.
|
[13] |
魏翠翠, 刘小飞, 林成芳, 等. 凋落物输入改变对亚热带两种米槠次生林土壤酶活性的影响[J]. 植物生态学报, 2018, 42(6):692-702.
|
[14] |
李晓杰, 刘小飞, 熊德成, 等. 中亚热带杉木人工林和米槠次生林凋落物添加与去除对土壤呼吸的影响[J]. 植物生态学报, 2016, 40(5):447-457.
|
[15] |
|
[16] |
周华, 徐国良. 九连山米槠群落结构特征分析[J]. 山东林业科技, 2010, 40(3):22-26.
|
[17] |
周嘉聪, 刘小飞, 郑永, 等. 氮沉降对中亚热带米槠天然林微生物生物量及酶活性的影响[J]. 生态学报, 2017, 37(1):127-135.
|
[18] |
韩世忠, 高人, 李爱萍, 等. 中亚热带地区米槠天然林土壤微生物群落结构的多样性[J]. 热带亚热带植物学报, 2015, 23(6):653-661.
|
[19] |
纪淑蓉, 郭剑芬, 万菁娟, 等. 水分对米槠天然林土壤有机碳矿化和微生物群落的影响[J]. 亚热带资源与环境学报, 2015, 10(1):34-42.
|
[20] |
|
[21] |
|
[22] |
|
[23] |
曾伟, 熊彩云, 肖复明, 等. 中亚热带常绿阔叶林优势树种幼树光合特性季节动态[J]. 南京林业大学学报(自然科学版), 2014, 38(5):157-160.
|
[24] |
|
[25] |
|
[26] |
|
[27] |
沈浩, 刘登义. 遗传多样性概述[J]. 生物学杂志, 2001, 18(3):5-7,4.
|
[28] |
叶学敏, 陈伏生, 孙荣喜, 等. 基于MaxEnt模型的南酸枣潜在适生区预测[J]. 江西农业大学学报, 2019, 41(3):440-446.
|
[29] |
吕锋, 解孝满, 韩彪, 等. 麻栎天然群体种子表型变异分析[J]. 林业科学研究, 2021, 34(2):174-179.
|
[30] |
厉月桥, 李迎超, 吴志庄. 不同种源蒙古栎种子表型性状与淀粉含量的变异分析[J]. 林业科学研究, 2013, 26(4):528-532.
|
[31] |
熊仕发, 吴立文, 陈益存, 等. 不同种源白栎果实形态特征和营养成分含量变异分析[J]. 林业科学研究, 2020, 33(2):93-102.
|
[32] |
季琳琳, 陈素传, 吴志辉, 等. 山核桃果实主要经济性状和养分含量的差异分析[J]. 南京林业大学学报(自然科学版), 2021, 46(1) : 131-137.
|
[33] |
江锡兵, 龚榜初, 刘庆忠, 等. 中国板栗地方品种重要农艺性状的表型多样性[J]. 园艺学报, 2014, 41(4):641-652.
|
[34] |
刘娟, 李悦, 于志民, 等. 圆齿野鸦椿种子性状变异及子代苗生长表现[J]. 江西农业大学学报, 2018, 40(4):734-742.
|
[35] |
李洪果, 陈达镇, 许靖诗, 等. 濒危植物格木天然种群的表型多样性及变异[J]. 林业科学, 2019, 55(4):69-83.
|
[36] |
李伟, 林富荣, 郑勇奇, 等. 皂荚南方天然群体种实表型多样性[J]. 植物生态学报, 2013, 37(1):61-69.
|
/
〈 |
|
〉 |