
Progresses of eucalypt genetics and breeding studies in China
LI Mei, SHI Jisen, LUO Jianzhong, GAN Siming
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (6) : 41-50.
Progresses of eucalypt genetics and breeding studies in China
Eucalypts are the common name for trees from the three genera Eucalyptus, Angophora and Corymbia within family Myrtaceae. They have been introduced into China for more than 130 years and are currently an important choice of trees for industrial plantations. In China, genetics and breeding studies of eucalypts began with seed orchard establishment in the 1960s, followed by provenance trials in the late 1970s. Since then, some important techniques have shown significant impacts on accelerating the genetics and breeding studies of eucalypts, mainly including: (1) seed orchard management, especially in the early years, which has promoted the sexual propagation of those eucalypt species with difficulty in vegetative propagation; (2) cutting and tissue culture developed in the 1990s that have enhanced the selection and cultivation of superior clones; (3) molecular markers arisen in the late 1990s that have started the new era of eucalypt molecular breeding; (4) genetic transformation initiated in the 2000s that has provided a novel approach for creating new varieties; and (5) genome editing that is under attempt and has casted great application potentials. As breeding strategy and germplasm are concerned, breeding strategies and breeding plans have formulated for several species, in which within-species recurrent selection and hybrid clone selection were taken into account on such economic traits as volume growth, wood density, pest and disease resistance and typhoon tolerance; and more than 3 000 families of about 200 species collected for germplasm conservation. Great progresses have been made in eucalypt genetics and breeding studies in China, mainly including: (1) recurrent selection over generations accomplished for major species, with only E. urophylla reaching the third generation; (2) hybrid breeding with achievements of such widely planted hybrid clones as DH32-29 and DH33-27; (3) clonal breeding plus vegetative propagation technique development for tremendous contribution to clonal forestry; (4) development of several types of molecular markers, including the next-generation sequencing based markers, and marker-based delineation of genomic loci linked/associated with growth, wood properties and/or stress response detected in E. urophylla and other five species; (5) genes cloned and expression analyzed for stress response, phytohormone and wood formation, including some with promising application potentials; and (6) optimization of genetic transformation system, successful production of transgenic plants and attempt of genome editing. Nevertheless, some challenges remain herein, including genotype × environment interaction complexity and high-quality genome and pan-genome sequence absence as well as germplasm erosion, new clone scarcity, few de novo cloned genes with breeding values, genomic selection uncertainty and further upgrading of genetic transformation technology. Eucalypt genetics and breeding studies have played a pivotal role in China’s forestry development, and breakthrough may be made in advanced generation improvement, long-term germplasm evaluation, heterosis mechanism exploration and utilization, genomic selection application and trans-genic and genome editing techniques.
eucalypts / genetics and breeding / advanced generation / hybrid clone / molecular breeding / genetic transformation
[1] |
|
[2] |
|
[3] |
|
[4] |
FAO. Eucalypts for planting[R]. Rome: Food and Agricultural Organization of the United Nations, 1979: 51-144.
|
[5] |
祁述雄. 中国桉树[M]. 2版. 北京: 中国林业出版社, 2002: 56-57, 90.
|
[6] |
国家林业和草原局. 中国森林资源报告(2014-2018)[M]. 北京: 中国林业出版社, 2019: 366.
National Forestry and Grassland Administration. China forest resources report (2014-2018)[M]. Beijing: China Forestry Publishing House, 2019: 366.
|
[7] |
甘四明, 施季森, 白嘉雨, 等. 尾叶桉和细叶桉无性系的RAPD指纹图谱构建[J]. 南京林业大学学报(自然科学版), 1999, 23(1): 11-14.
|
[8] |
|
[9] |
范春节, 曾炳山, 裘珍飞, 等. 尾赤桉DH201-2遗传转化体系建立的研究[J]. 浙江林业科技, 2009, 29(4): 15-20.
|
[10] |
陈博雯, 肖玉菲, 李军集, 等. EuCAD基因CRISPR/Cas9敲除载体构建及基因编辑效果验证[J/OL]. 分子植物育种, (2021-12-11)[2022-05-06]. http://kns.cnki.net/kcms/detail/46.1068.S.20211209.0443.006.html.
|
[11] |
|
[12] |
李淡清. 蓝桉、直干桉优树选择研究[J]. 林业科学, 1990, 26(2): 167-174.
|
[13] |
张翰华, 潘永言. 雷林1号桉子代林调查研究[J]. 桉树科技, 1982, (3): 35-48.
|
[14] |
|
[15] |
|
[16] |
|
[17] |
刘德杰. 广西东门林场桉树无性系的研究、发展及生产[J]. 广西林业科学, 2001(S1): 28-32.
|
[18] |
|
[19] |
罗建中. 我国耐寒桉树的种质资源及其遗传改良[J]. 桉树科技, 2006, 23(1): 24-31.
|
[20] |
刘德浩, 张卫华, 张方秋. 尾叶桉核心种质初步构建[J]. 华南农业大学学报, 2014, 35(6): 89-93.
|
[21] |
刘德浩, 张卫华, 张方秋, 等. 不同种源巨桉幼林生长性状变异与早期评价[J]. 西南林业大学学报, 2015, 35(4): 91-94.
|
[22] |
|
[23] |
陈小中, 张临萍, 陈炙, 等. 大花序桉优树家系苗期性状的遗传变异[J]. 四川林业科技, 2020, 41(2): 8-14.
|
[24] |
刘思汝, 林彦, 刘晓华, 等. 柠檬桉群体遗传多样性和遗传结构的SSR分析[J]. 分子植物育种, 2016, 14(7): 1923-1929.
|
[25] |
谢秋兰, 林彦, 王楚彪, 等. 柠檬桉在中国湿热地区的早期生长和抗病性遗传变异[J]. 分子植物育种, 2017, 15(8): 3278-3285.
|
[26] |
王豁然. 澳大利亚阔叶树引种与栽培的研究——中澳合作研究项目[J]. 林业科学研究, 1988, 1(1): 112-113.
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
罗建中,
|
[34] |
|
[35] |
|
[36] |
|
[37] |
刘晓华, 罗建中, 卢万鸿, 等. 两个连续世代粗皮桉生长与抗风能力遗传特征[J]. 分子植物育种, 2017, 15(12): 5103-5111.
|
[38] |
苏兴仁, 吴世明, 韦民, 等. 广西柳窿杂种桉选育研究初报[J]. 桉树科技协作动态, 1982(4): 24-28.
|
[39] |
项东云, 郑白, 周维, 等. 广西桉树育种研究概述[J]. 广西林业科学, 1999, 28(2): 71-80.
|
[40] |
|
[41] |
|
[42] |
罗建中, 谢耀坚, 曹加光, 等. 2年生桉树杂交种生长与抗风的遗传变异研究[J]. 草业学报, 2009, 18(6): 91-97.
|
[43] |
翁启杰, 赖秋香, 李发根, 等. 尾叶桉×邓恩桉早期生长和耐寒性的遗传分析[J]. 南京林业大学学报(自然科学版), 2015, 39(5): 33-38.
|
[44] |
|
[45] |
|
[46] |
陈升侃. 尾叶桉×细叶桉重要经济性状的遗传变异与关联分析[D]. 北京: 中国林业科学研究院, 2018.
|
[47] |
|
[48] |
|
[49] |
任世奇, 罗建中, 彭彦, 等. 桉树无性系的单板出材率与价值研究[J]. 草业学报, 2010, 19(6): 46-54.
|
[50] |
沈文生, 黄乃秀. 桉树种间、种内、无性系抗青枯病选育的新技术[J]. 中国野生植物资源, 2000, 19(2): 13-15.
|
[51] |
朱成庆. 雷州半岛桉树无性系抗风性的研究[J]. 林业科学研究, 2006, 19(4): 532-536.
|
[52] |
李宝福. 福建中亚热带7个桉树无性系多点造林对比试验研究[J]. 林业科学研究, 2007, 20(2): 181-187.
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
周长品, 李发根, 翁启杰, 等. 2010. PCR产物直接测序和混合克隆测序进行桉树EST-SSR标记开发[J]. 分子植物育种, 2010, 8(1): e0001.
|
[58] |
|
[59] |
|
[60] |
于晓丽. 桉树高密度遗传图谱构建及生长和材性相关QTL解析[D]. 北京: 中国林业科学研究院, 2015.
|
[61] |
|
[62] |
王楚彪. 基于全基因组重测序的多世代粗皮桉遗传变异研究及材性性状关联分析[D]. 北京: 中国林业科学研究院, 2021.
|
[63] |
于晓丽, 李发根, 翁启杰, 等. 桉树扦插生根和生长性状的QTL定位[J]. 林业科学研究, 2011, 24(2): 200-204.
|
[64] |
朱显亮. 利用GBS开展尾细桉杂种生长、材性QTL定位及候选功能基因研究[D]. 北京: 中国林业科学研究院, 2021.
|
[65] |
宋志姣, 翁启杰, 周长品, 等. 细叶桉(Eucalyptus tereticornis)早期生长的SSR标记关联分析[J]. 分子植物育种, 2016, 14(1): 195-203.
|
[66] |
|
[67] |
尚秀华, 张沛健, 谢耀坚, 等. 赤桉抗风和生长性状的SSR关联分析[J]. 南京林业大学学报(自然科学版), 2018, 42(4): 97-105.
|
[68] |
|
[69] |
王京京, 童再康, 黄程前, 等. 巨桉EgrCBF3基因的克隆与逆境响应表达分析[J]. 西北农林科技大学学报(自然科学版), 2013, 41(7): 113-118.
|
[70] |
魏晓玲, 程龙军, 窦锦青, 等. 巨桉EgrDREB2A基因结构及表达特性分析[J]. 林业科学, 2015, 51(2): 80-90.
|
[71] |
|
[72] |
|
[73] |
|
[74] |
|
[75] |
|
[76] |
|
[77] |
|
[78] |
ZHANN,
|
[79] |
|
[80] |
陈博雯, 盖颖, 蒋湘宁. 尾叶桉GLU4肉桂酰-辅酶A还原酶基因克隆及原核表达[J]. 中南林业科技大学学报, 2014, 34(11): 71-76, 97.
|
[81] |
陈博雯, 潘俊霞, 蔡文侠, 等. 尾叶桉GLU4中4-香豆酰辅酶A连接酶基因克隆及原核表达[J]. 广东农业科学, 2014, 41(12): 150-155.
|
[82] |
陈博雯, 刘海龙, 肖玉菲, 等. 尾叶桉COMT和CCoAOMT基因定向调控木质素单体合成的烟草转化研究[J]. 中国生物工程杂志, 2018, 38(3): 24-32.
|
[83] |
郭利军, 曾炳山, 刘英. 根癌农杆菌介导的巨桉Eg5高效遗传转化体系建立[J]. 植物学报, 2013, 48(1): 87-93.
|
[84] |
|
[85] |
|
[86] |
|
[87] |
边黎明, 张慧春. 表型技术在林木育种和精准林业上的应用[J]. 林业科学, 2020, 56(6): 113-126.
|
[88] |
|
[89] |
|
[90] |
甘四明. 林木分子育种研究的基因组学信息资源述评[J]. 南京林业大学学报(自然科学版), 2020, 44(4): 1-11.
|
[91] |
黄崇辉, 杨朝辉, 陈文平, 等. 桉树杂交育种技术在雷州林业局的应用[J]. 桉树科技, 2008, 25(2): 55-60.
|
[92] |
|
[93] |
谢耀坚. 真实的桉树[M]. 北京: 中国林业出版社, 2015: 76.
|
[94] |
|
[95] |
|
陈博雯研究员、欧阳乐军教授、尚秀华副研究员和范春节副研究员提供了部分文献。
/
〈 |
|
〉 |