Progresses of eucalypt genetics and breeding studies in China

LI Mei, SHI Jisen, LUO Jianzhong, GAN Siming

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (6) : 41-50.

PDF(1946 KB)
PDF(1946 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (6) : 41-50. DOI: 10.12302/j.issn.1000-2006.202206036

Progresses of eucalypt genetics and breeding studies in China

Author information +
History +

Abstract

Eucalypts are the common name for trees from the three genera Eucalyptus, Angophora and Corymbia within family Myrtaceae. They have been introduced into China for more than 130 years and are currently an important choice of trees for industrial plantations. In China, genetics and breeding studies of eucalypts began with seed orchard establishment in the 1960s, followed by provenance trials in the late 1970s. Since then, some important techniques have shown significant impacts on accelerating the genetics and breeding studies of eucalypts, mainly including: (1) seed orchard management, especially in the early years, which has promoted the sexual propagation of those eucalypt species with difficulty in vegetative propagation; (2) cutting and tissue culture developed in the 1990s that have enhanced the selection and cultivation of superior clones; (3) molecular markers arisen in the late 1990s that have started the new era of eucalypt molecular breeding; (4) genetic transformation initiated in the 2000s that has provided a novel approach for creating new varieties; and (5) genome editing that is under attempt and has casted great application potentials. As breeding strategy and germplasm are concerned, breeding strategies and breeding plans have formulated for several species, in which within-species recurrent selection and hybrid clone selection were taken into account on such economic traits as volume growth, wood density, pest and disease resistance and typhoon tolerance; and more than 3 000 families of about 200 species collected for germplasm conservation. Great progresses have been made in eucalypt genetics and breeding studies in China, mainly including: (1) recurrent selection over generations accomplished for major species, with only E. urophylla reaching the third generation; (2) hybrid breeding with achievements of such widely planted hybrid clones as DH32-29 and DH33-27; (3) clonal breeding plus vegetative propagation technique development for tremendous contribution to clonal forestry; (4) development of several types of molecular markers, including the next-generation sequencing based markers, and marker-based delineation of genomic loci linked/associated with growth, wood properties and/or stress response detected in E. urophylla and other five species; (5) genes cloned and expression analyzed for stress response, phytohormone and wood formation, including some with promising application potentials; and (6) optimization of genetic transformation system, successful production of transgenic plants and attempt of genome editing. Nevertheless, some challenges remain herein, including genotype × environment interaction complexity and high-quality genome and pan-genome sequence absence as well as germplasm erosion, new clone scarcity, few de novo cloned genes with breeding values, genomic selection uncertainty and further upgrading of genetic transformation technology. Eucalypt genetics and breeding studies have played a pivotal role in China’s forestry development, and breakthrough may be made in advanced generation improvement, long-term germplasm evaluation, heterosis mechanism exploration and utilization, genomic selection application and trans-genic and genome editing techniques.

Key words

eucalypts / genetics and breeding / advanced generation / hybrid clone / molecular breeding / genetic transformation

Cite this article

Download Citations
LI Mei , SHI Jisen , LUO Jianzhong , et al. Progresses of eucalypt genetics and breeding studies in China[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(6): 41-50 https://doi.org/10.12302/j.issn.1000-2006.202206036

References

[1]
HILL K D, JOHNSON L A S. Systematic studies in the eucalypts-7: a revision of the bloodwoods, genus Corymbia (Myrtaceae)[J]. Telopea, 1995, 6(2/3): 185-504. DOI:10.7751/telopea19953017.
[2]
PRYOR L D, WILLIAMS E R, GUNN B V. A morphometric analysis of Eucalyptus urophylla and related taxa with description of two new species[J]. Aust Syst Bot, 1995, 8(1): 57-70. DOI:10.1071/SB9950057.
[3]
PRYOR L D. Biology of Eucalypts[M]. London: Edward Arnold, 1976: 82.
[4]
FAO. Eucalypts for planting[R]. Rome: Food and Agricultural Organization of the United Nations, 1979: 51-144.
[5]
祁述雄. 中国桉树[M]. 2版. 北京: 中国林业出版社, 2002: 56-57, 90.
QI S X. Eucalyptus in China[M]. 2nd ed. Beijing: China Forestry Publishing House, 2002: 56-57, 90.
[6]
国家林业和草原局. 中国森林资源报告(2014-2018)[M]. 北京: 中国林业出版社, 2019: 366.
National Forestry and Grassland Administration. China forest resources report (2014-2018)[M]. Beijing: China Forestry Publishing House, 2019: 366.
[7]
甘四明, 施季森, 白嘉雨, 等. 尾叶桉和细叶桉无性系的RAPD指纹图谱构建[J]. 南京林业大学学报(自然科学版), 1999, 23(1): 11-14.
GAN S M, SHI J S, BAI J Y, et al. RAPD fingerprints of clones of Eucalyptus urophylla S T Blake and Eucalyptus tereticornis Smith[J]. J Nanjing For Univ (Nat Sci Ed), 1999, 23(1): 11-14. DOI:10.3969/j.issn.1000-2006.1999.01.003.
[8]
NIKLES D G. A breeding strategy for genetic improvement of selected tropical eucalypts at Dongmen State Forest Farm[R]. Dongmen Town, Guangxi: Dongmen State Forest Farm, 1987.
[9]
范春节, 曾炳山, 裘珍飞, 等. 尾赤桉DH201-2遗传转化体系建立的研究[J]. 浙江林业科技, 2009, 29(4): 15-20.
FAN C J, ZENG B S, QIU Z F, et al. Establishment of genetic transformation of Eucalyptus urophylla × E. camaldulensis clone DH201-2[J]. J Zhejiang For Sci, 2009, 29(4): 15-20.
[10]
陈博雯, 肖玉菲, 李军集, 等. EuCAD基因CRISPR/Cas9敲除载体构建及基因编辑效果验证[J/OL]. 分子植物育种, (2021-12-11)[2022-05-06]. http://kns.cnki.net/kcms/detail/46.1068.S.20211209.0443.006.html.
CHEN B W, XIAO Y F, LI J J, et al. Construction and verification of CRISPR/Cas9 knockout vector of EuCAD gene[J]. Mol Plant Breed,(2021-12-11)(2022-05-06). http://kns.cnki.net/kcms/detail/46.1068.S.20211209.0443.006.html.
[11]
TURNBULL J W. Development of sustainable forestry plantations in China: a review[R]. Canberra: Australian Centre for International Agricultural Research, 2007.
[12]
李淡清. 蓝桉、直干桉优树选择研究[J]. 林业科学, 1990, 26(2): 167-174.
LI D Q. A study on plus tree selection in Eucalyptus globulus Labill and Eucalyptus maidenii F V M[J]. Sci Silvae Sin, 1990, 26(2): 167-174.
[13]
张翰华, 潘永言. 雷林1号桉子代林调查研究[J]. 桉树科技, 1982, (3): 35-48.
ZHANG H H, PAN Y Y. Investigation on progeny trials of Eucalyptus leizhou No.1[J]. Eucalypt Sci Technol, 1982, (3): 35-48.
[14]
ELDRIDGE K G. Breeding strategy for eucalypts in southern China[R]. Beijing: World Bank Loan Project Management Centre, China National Afforestation Project, 1991.
[15]
ARNOLD R J, 罗建中, 谢耀坚. 中国桉树育种联盟遗传改良计划[R]. 湛江: 中国桉树育种联盟, 2010.
ARNOLD R J, LUO J Z, XIE Y J. Genetic improvement plan for China Eucalypt Breeding Alliance[R]. Zhanjiang: China Eucalypt Breeding Alliance, 2010.
[16]
ELDRIDGE K G, DAVIDSON J, HARWOOD C, et al. Eucalypt domestication and Breeding[M]. Oxford: Oxford University Press Inc, 1993: 162-180.
[17]
刘德杰. 广西东门林场桉树无性系的研究、发展及生产[J]. 广西林业科学, 2001(S1): 28-32.
LIU D J. Research, development and production on eucalypt clones in Guangxi Dongmen forest farm[J]. Guangxi For Sci, 2001(S1): 28-32. DOI:10.3969/j.issn.1006-1126.2001.z1.008.
[18]
VAN BUEREN M. Eucalypt tree improvement in China. Impact assessment series report No. 30[R]. Canberra: Australian Centre for International Agricultural Research, 2004.
[19]
罗建中. 我国耐寒桉树的种质资源及其遗传改良[J]. 桉树科技, 2006, 23(1): 24-31.
LUO J Z. Cold-tolerant eucalypt germplasm resources and their genetic improvement in China[J]. Eucalypt Sci Technol, 2006, 23(1): 24-31. DOI:10.3969/j.issn.1674-3172.2006.01.006.
[20]
刘德浩, 张卫华, 张方秋. 尾叶桉核心种质初步构建[J]. 华南农业大学学报, 2014, 35(6): 89-93.
LIU D H, ZHANG W H, ZHANG F Q. Preliminary construction of core collection of Eucalyptus urophylla germplasm[J]. J South China Agri Univ, 2014, 35(6): 89-93. DOI:10.7671/j.issn.1001-411X.2014.06.017.
[21]
刘德浩, 张卫华, 张方秋, 等. 不同种源巨桉幼林生长性状变异与早期评价[J]. 西南林业大学学报, 2015, 35(4): 91-94.
LIU D H, ZHANG W H, ZHANG F Q, et al. Growth traits variation analysis and early evaluation of Eucalyptus grandis seedling of different provenance[J]. J Southwest For Univ, 2015, 35(4): 91-94. DOI:10.11929/j.issn.2095-1914.2015.04.016.
[22]
LI C, WENG Q, CHEN J B, et al. Genetic parameters for growth and wood mechanical properties in Eucalyptus cloeziana F. Muell.[J]. New For, 2017, 48(1): 33-49. DOI:10.1007/s11056-016-9554-4:1-17.
[23]
陈小中, 张临萍, 陈炙, 等. 大花序桉优树家系苗期性状的遗传变异[J]. 四川林业科技, 2020, 41(2): 8-14.
CHEN X Z, ZHANG L P, CHEN J, et al. Genetic variation and selection of seedling traits in superior Eucalyptus cloeziana families[J]. J Sichuan For Sci Technol, 2020, 41(2): 8-14. DOI:10.12172/201912120001.
[24]
刘思汝, 林彦, 刘晓华, 等. 柠檬桉群体遗传多样性和遗传结构的SSR分析[J]. 分子植物育种, 2016, 14(7): 1923-1929.
LIU S R, LIN Y, LIU X H, et al. Genetic diversity and genetic structure of Corymbia citriodora based on SSR analysis[J]. Mol Plant Breed, 2016, 14(7): 1923-1929. DOI:10.13271/j.mpb.014.001923.
[25]
谢秋兰, 林彦, 王楚彪, 等. 柠檬桉在中国湿热地区的早期生长和抗病性遗传变异[J]. 分子植物育种, 2017, 15(8): 3278-3285.
XIE Q L, LIN Y, WANG C B, et al. Genetic variation in early growth and disease resistance in Corymbia citriodora in humid subtropical China[J]. Mol Plant Breed, 2017, 15(8): 3278-3285. DOI:10.13271/j.mpb.015.003278.
[26]
王豁然. 澳大利亚阔叶树引种与栽培的研究——中澳合作研究项目[J]. 林业科学研究, 1988, 1(1): 112-113.
WANG H R. Introduction and cultivation experiments for Australian broad-leaved tree species: China-Australia cooperative project[J]. For Res, 1988, 1(1): 112-113.
[27]
WANG H, ZHENG Y, ZANG D, et al.Provenance variation in growth and wood properties of E. grandis in China[C]// BROWN A G. Australian tree species research in China. ACIAR Proceedings No. 48. Canberra:Australian Centre for International Agricultural Research, 1994: 105-107.
[28]
WEI X, BORRALHO N M G. Genetic control of wood basic density and bark thickness and their relationships with growth traits of Eucalyptus urophylla in South East China[J]. Silvae Genet, 1997, 46(4): 245-250.
[29]
LUO J. Variation in growth and wood density of Eucalyptus urophylla[C]// TURNBULL J W. Eucalypts in Asia. ACIAR Proceedings No. 111. Canberra:Australian Centre for International Agricultural Research, 2003: 94-100.
[30]
XU J, WU K, WU J, et al. Genetic variation in a provenance trial of Eucalyptus tereticornis[C]// BROWN A G. Australian tree species research in China. ACIAR Proceedings No. 48. Canberra:Australian Centre for International Agricultural Research, 1994: 123-126.
[31]
LUO J, ARNOLD R J, AKEN K. Genetic variation in growth and typhoon resistance in Eucalyptus pellita in southwestern China[J]. Aust For, 2006, 69(1): 38-47. DOI:10.1080/00049158.2006.10674986.
[32]
ZANG D, WANG H, YOU Y. Performance and selection of a 4-year Eucalyptus globulus seedling seed orchard in Yunnan Province, China[C]// POTTS B M, BORRALHO N M G, REID J B, et al. Eucalypt plantations: improving fibre yield and quality. Proceedings of CRCTHF-IUFRO conference. Hobart: CRC for Temperate Hardwood Forestry, 1995: 226-229.
[33]
罗建中, ARNOLD R, 项东云, 等. 邓恩桉生长、木材密度和树皮厚度的遗传变异研究[J]. 林业科学研究, 2009, 22(6): 758-764.
LUO J Z, ARNOLD R, XIANG D Y, et al. Genetic variation in growth, wood density and bark thickness of Eucalyptus dunnii[J]. For Res, 2009, 22(6): 758-764.
[34]
LUO J, ARNOLD R, LU W, et al. Genetic variation in Eucalyptus camaldulensis and E. tereticornis for early growth and susceptibility to the gall wasp Leptocybe invasa in China[J]. Euphytica, 2014, 196(3): 397-411. DOI:10.1007/s10681-013-1042-8.
[35]
LU W, ROGER R, ZHANG L, et al. Genetic diversity and structure through three cycles of a Eucalyptus urophylla S.T.Blake breeding program[J]. Forests, 2018, 9(7): 372. DOI:10.3390/f9070372.
[36]
LUO J, ZHOU G, WU B, et al. Genetic variation and age-age correlations of Eucalyptus grandis at Dongmen Forest Farm in southern China[J]. Aust For, 2010, 73(2): 67-80. DOI:10.1080/00049158.2010.10676312.
[37]
刘晓华, 罗建中, 卢万鸿, 等. 两个连续世代粗皮桉生长与抗风能力遗传特征[J]. 分子植物育种, 2017, 15(12): 5103-5111.
LIU X H, LUO J Z, LU W H, et al. Genetic characteristics in 2 consecutive generations’ Eucalyptus pellita for growth and typhoon resistance[J]. Mol Plant Breed, 2017, 15(12): 5103-5111. DOI:10.13271/j.mpb.015.005103.
[38]
苏兴仁, 吴世明, 韦民, 等. 广西柳窿杂种桉选育研究初报[J]. 桉树科技协作动态, 1982(4): 24-28.
SU X R, WU S M, WEI M, et al. Preliminary study on Guangxi’s Eucalyptus saligna × E. exserta hybrid breeding[J]. Eucalypt Sci Technol, 1982(4): 24-28.
[39]
项东云, 郑白, 周维, 等. 广西桉树育种研究概述[J]. 广西林业科学, 1999, 28(2): 71-80.
XIANG D Y, ZHENG B, ZHOU W, et al. Review on eucalypt breeding in Guangxi region[J]. Guangxi For Sci Technol, 1999, 28(2): 71-80. DOI:10.19692/j.cnki.gfs.1999.02.004.
[40]
HE X, LI F, LI M, et al. Quantitative genetics of cold hardiness and growth in Eucalyptus as estimated from E. urophylla × E. tereticornis hybrids[J]. New For, 2012, 43(3): 383-394. DOI:10.1007/s11056-011-9287-3.
[41]
GAN S, LI M, LI F, et al. Genetic analysis of growth and susceptibility to bacterial wilt (Ralstonia solanacearum) in Eucalyptus by interspecifific factorial crossing[J]. Silvae Genet, 2004, 53(5/6): 254-258. DOI:10.1515/sg-2004-0047.
[42]
罗建中, 谢耀坚, 曹加光, 等. 2年生桉树杂交种生长与抗风的遗传变异研究[J]. 草业学报, 2009, 18(6): 91-97.
LUO J Z, XIE Y J, CAO J G, et al. Genetic variation in 2-year eucalypt hybrids’ growth and typhoon resistance[J]. Acta Prataculturae Sin, 2009, 18(6): 91-97.
[43]
翁启杰, 赖秋香, 李发根, 等. 尾叶桉×邓恩桉早期生长和耐寒性的遗传分析[J]. 南京林业大学学报(自然科学版), 2015, 39(5): 33-38.
WENG Q J, LAI Q X, LI F G, et al. Genetic analysis on early growth and cold tolerance of E. urophylla × E. dunnii hybrids[J]. J Nanjing For Univ (Nat Sci Ed), 2015, 39(5): 33-38. DOI:10.3969/j.issn.1000-2006.2015.05.006.
[44]
POTTS B M, DUNGEY H. Interspecific hybridization of Eucalyptus: key issues for breeders and geneticists[J]. New For, 2004, 27(2): 115-138. DOI:10.1023/A:1025021324564.
[45]
BAI J, XU J, GAN S. Genetic improvement of tropical eucalypts in China[C]// TURNBULL J W. Eucalypts in Asia. ACIAR Proceedings No. 111. Canberra:Australian Centre for International Agricultural Research, 2003: 64-70.
[46]
陈升侃. 尾叶桉×细叶桉重要经济性状的遗传变异与关联分析[D]. 北京: 中国林业科学研究院, 2018.
CHEN S K. Genetic variation and association analysis in important economic traits in Eucalyptus urophylla × E. tereticornis[D]. Beijing: Chinese Academy of Forestry, 2018.
[47]
LI F, GAN S, ZHANG Z, et al. Microsatellite-based genotyping of the commercial Eucalyptus clones cultivated in China[J]. Silvae Genet, 2011, 60(5): 216-223. DOI:10.1515/sg-2011-0029.
[48]
LUO J, ARNOLD R J, CAO J, et al. Variation in pulp wood traits between eucalypt clones across sites and implications for deployment strategies[J]. J Trop For Sci, 2012, 24(1): 70-82.
[49]
任世奇, 罗建中, 彭彦, 等. 桉树无性系的单板出材率与价值研究[J]. 草业学报, 2010, 19(6): 46-54.
REN S Q, LUO J Z, PENG Y, et al. A study on veneer recovery ratio and value of eucalypt clones[J]. Acta Prataculturae Sin, 2010, 19(6): 46-54.
[50]
沈文生, 黄乃秀. 桉树种间、种内、无性系抗青枯病选育的新技术[J]. 中国野生植物资源, 2000, 19(2): 13-15.
SHEN W S, HUANG N X. A new technique on anti-bacteria wilt variety selecting from eucalypt inter and intra-species clones[J]. Chin Wild Plant Resour, 2000, 19(2): 13-15.
[51]
朱成庆. 雷州半岛桉树无性系抗风性的研究[J]. 林业科学研究, 2006, 19(4): 532-536.
ZHU C Q. Study on the wind-resistance traits of Eucalyptus clones in Leizhou Peninsula[J]. For Res, 2006, 19(4): 532-536.
[52]
李宝福. 福建中亚热带7个桉树无性系多点造林对比试验研究[J]. 林业科学研究, 2007, 20(2): 181-187.
LI B F. Contratest investigation on seven clones of Eucalyptus multiplace forestation in middle-subtropical Fujian[J]. For Res, 2007, 20(2): 181-187.
[53]
YANG H, WENG Q, LI F, et al. Genotypic variation and genotype-by-environment interactions in growth and wood properties in a cloned Eucalyptus urophylla × E. tereticornis family in southern China[J]. For Sci, 2018, 64(3): 225-232. DOI:10.1093/forsci/fxx011.
[54]
GAN S, SHI J, LI M, et al. Moderate-density molecular maps of Eucalyptus urophylla S. T. Blake and E. tereticornis Smith genomes based on RAPD markers[J]. Genetica, 2003, 118(1): 59-67. DOI:10.1023/A:1022966018079.
[55]
YU X, GUO Y, ZHANG X, et al. Integration of EST-CAPS markers into genetic maps of Eucalyptus urophylla and E. tereticornis and their alignment with E. grandis genome sequence[J]. Silvae Genet, 2012, 61(6): 247-255. DOI:10.1515/sg-2012-0031.
[56]
YU X, ZHOU C, LI F, et al. A novel set of EST-InDel markers in Eucalyptus L’Hérit.: polymorphisms, cross-species amplification, physical positions and genetic mapping[J]. Mol Breed, 2016, 36(7): 104. DOI:10.1007/s11032-016-0523-6.
[57]
周长品, 李发根, 翁启杰, 等. 2010. PCR产物直接测序和混合克隆测序进行桉树EST-SSR标记开发[J]. 分子植物育种, 2010, 8(1): e0001.
ZHOU C P, LI F G, WENG Q J, et al. Comparison between direct sequencing and pool-cloning-based sequencing of PCR products in EST-SSR marker development in Eucalyptus[J]. Fenzi Zhiwu Yuzhong, 2010, 8(1): e0001 DOI:10.5376/mpb.cn.2010.08.0001.
[58]
HE X, WANG Y, LI F, et al. Development of 198 novel EST-derived microsatellites in Eucalyptus (Myrtaceae)[J]. Am J Bot, 2012, 99(4): e134-148. DOI:10.3732/ajb.1100442.
[59]
ZHOU C, HE X, LI F, et al. Development of 240 novel EST-SSRs in Eucalyptus L’Hérit.[J]. Mol Breed, 2014, 33(1): 221-225. DOI:10.1007/s11032-013-9923-z.
[60]
于晓丽. 桉树高密度遗传图谱构建及生长和材性相关QTL解析[D]. 北京: 中国林业科学研究院, 2015.
YU X L. Construction of dense genetic maps in Eucalyptus and detection of quantitative trait loci (QTLs) for growth and wood property traits[D]. Beijing: Chinese Academy of Forestry, 2015.
[61]
LI F, ZHOU C, WENG Q, et al. Comparative genomics analyses reveal extensive chromosome colinearity and novel quantitative trait loci in Eucalyptus[J]. PLoS ONE, 2015, 10: e0145144. DOI:10.1371/journal.pone.0145144.
[62]
王楚彪. 基于全基因组重测序的多世代粗皮桉遗传变异研究及材性性状关联分析[D]. 北京: 中国林业科学研究院, 2021.
WANG C B. Genetic variation analysis and wood traits association study of multi-generation Eucalyptus pellita based on whole genome resequencing[D]. Beijing: Chinese Academy of Forestry, 2021.
[63]
于晓丽, 李发根, 翁启杰, 等. 桉树扦插生根和生长性状的QTL定位[J]. 林业科学研究, 2011, 24(2): 200-204.
YU X L, LI F G, WENG Q J, et al. Detection of quantitative trait loci related with rooting ability of cuttings and growth of Eucalyptus[J]. For Res, 2011, 24(2): 200-204. DOI:10.13275/j.cnki.lykxyj.2011.02.018.
[64]
朱显亮. 利用GBS开展尾细桉杂种生长、材性QTL定位及候选功能基因研究[D]. 北京: 中国林业科学研究院, 2021.
ZHU X L. QTL mapping and candidate functional gene identification of growth and wood properties in Eucalyptus urophylla × E. tereticornis hybrids by GBS[D]. Beijing: Chinese Academy of Forestry, 2021.
[65]
宋志姣, 翁启杰, 周长品, 等. 细叶桉(Eucalyptus tereticornis)早期生长的SSR标记关联分析[J]. 分子植物育种, 2016, 14(1): 195-203.
SONG Z J, WENG Q J, ZHOU C P, et al. SSR markers associated with early growth in Eucalyptus tereticornis[J]. Mol Plant Breed, 2016, 14(1): 195-203. DOI:10.13271/j.mpb.014.000195.
[66]
ZHANG M, ZHOU C, SONG Z, et al. The first identification of genomic loci in plants associated with resistance to galling insects: a case study in Eucalyptus L’Hér. (Myrtaceae)[J]. Sci Rep, 2018, 8: 2319. DOI:10.1038/s41598-018-20780-9.
[67]
尚秀华, 张沛健, 谢耀坚, 等. 赤桉抗风和生长性状的SSR关联分析[J]. 南京林业大学学报(自然科学版), 2018, 42(4): 97-105.
SHANG X H, ZHANG P J, XIE Y J, et al. SSR association analysis of Eucalyptus camaldulensis wind resistance and growth traits[J]. J Nanjing For Univ (Nat Sci Ed), 2018, 42(4): 97-105. DOI:10.3969/j.issn.1000-2006.201711019.
[68]
ZHOU C, WANG L, WENG Q, et al. Association of microsatellite markers with growth and wood mechanical traits in Eucalyptus cloeziana F. Muell. (Myrtaceae)[J]. Ind Crop Prod, 154: 112702. DOI:10.1016/j.indcrop.2020.112702.
[69]
王京京, 童再康, 黄程前, 等. 巨桉EgrCBF3基因的克隆与逆境响应表达分析[J]. 西北农林科技大学学报(自然科学版), 2013, 41(7): 113-118.
WANG J J, TONG Z K, HUANG C Q, et al. Isolation and expression analysis under stress of EgrCBF3 in Eucalyptus grandis[J]. J Northwest A&F Univ (Nat Sci Ed), 2013, 41(7): 113-118.
[70]
魏晓玲, 程龙军, 窦锦青, 等. 巨桉EgrDREB2A基因结构及表达特性分析[J]. 林业科学, 2015, 51(2): 80-90.
WEI X L, CHENG L J, DOU J Q, et al. The structure and expression characteristics of EgrDREB2A gene in Eucalyptus grandis[J]. Sci Silvae Sin, 2015, 51(2): 80-90. DOI:10.11707/j.1001-7488.20150210.
[71]
WANG S, WEI X L, CHENG L J, et al. Identification of a C2H2-type zinc finger gene family from Eucalyptus grandis and its response to various abiotic stresses[J]. Biol Plant, 58(2): 385-390. DOI:10.1007/s10535-014-0399-4.
[72]
ZHANG J, WU J, GUO M, et al. Genome-wide characterization and expression profiling of Eucalyptus grandis HD-Zip gene family in response to salt and temperature stress[J]. BMC Plant Biol, 2020, 20: 451. DOI:10.1186/s12870-020-02677-w.
[73]
DAI J, SUN J, PENG W, et al. FAR1/FHY3 transcription factors positively regulate the salt and temperature stress responses in Eucalyptus grandis[J]. Front Plant Sci, 2022, 13: 883654. DOI:10.3389/fpls.2022.883654.
[74]
FAN C, YAO H, QIU Z, et al. Genome-wide analysis of Eucalyptus grandis WRKY genes family and their expression profiling in response to hormone and abiotic stress treatment[J]. Gene, 2018, 678: 38-48. DOI:10.1016/j.gene.2018.08.003.
[75]
FAN C, GUO G, YAN H, et al. Characterization of Brassinazole resistant (BZR) gene family and stress induced expression in Eucalyptus grandis[J]. Physiol Mol Biol Plant, 2018, 24(5): 821-831. DOI:10.1007/s12298-018-0543-2.
[76]
YAN H, WANG Y, HU B, et al. Genome-wide characterization, evolution, and expression profiling of VQ gene family in response to phytohormone treatments and abiotic stress in Eucalyptus grandis[J]. Int J Mol Sci, 2019, 20(7): 1765. DOI:10.3390/ijms20071765.
[77]
LIU G, XIE Y, SHANG X, et al. Expression patterns and gene analysis of the cellulose synthase gene superfamily in Eucalyptus grandis[J]. Forests, 2021, 12: 1254. DOI:10.3390/f12091254.
[78]
ZHANN, SHANG X, WANG Z, et al. Screening cellulose synthesis related genes of EgrEXP and EgrHEX in Eucalyptus grandis[J]. Gene, 2022, 824: 146396. DOI:10.1016/j.gene.2022.146396.
[79]
CHEN B W, XIAO Y F, LI J J, et al. Identification of the CAD gene from Eucalyptus urophylla GLU4 and its functional analysis in transgenic tobacco[J]. Genet Mol Res, 2016, 15(4): gmr15049062. DOI:10.4238/gmr15049062.
[80]
陈博雯, 盖颖, 蒋湘宁. 尾叶桉GLU4肉桂酰-辅酶A还原酶基因克隆及原核表达[J]. 中南林业科技大学学报, 2014, 34(11): 71-76, 97.
CHEN B W, GAI Y, JIANG X N. Cloning and prokaryotic expression of cinnamoyl Co-A reductase of Eucalyptus urophylla clone GLU4[J]. J Central South Univ For & Technol, 2014, 34(11): 71-76, 97.
[81]
陈博雯, 潘俊霞, 蔡文侠, 等. 尾叶桉GLU4中4-香豆酰辅酶A连接酶基因克隆及原核表达[J]. 广东农业科学, 2014, 41(12): 150-155.
CHEN B W, PAN J X, CAI W X, et al. Gene cloning and prokaryotic expression of 4-coumarate: coenzyme A ligase in Eucalyptus urophylla clone GLU4[J]. Guangdong Agri Sci, 2014, 41(12): 150-155.
[82]
陈博雯, 刘海龙, 肖玉菲, 等. 尾叶桉COMTCCoAOMT基因定向调控木质素单体合成的烟草转化研究[J]. 中国生物工程杂志, 2018, 38(3): 24-32.
CHEN B W, LIU H L, XIAO Y F, et al. Directional regulation of lignin monomer synthesis in tobacco by using COMT gene and CCo-AOMT gene of Eucalyptus urophylla[J]. China Biotechnol, 2018, 38(3): 24-32. DOI:10.13523/j.cb.20180304.
[83]
郭利军, 曾炳山, 刘英. 根癌农杆菌介导的巨桉Eg5高效遗传转化体系建立[J]. 植物学报, 2013, 48(1): 87-93.
GUO L J, ZENG B S, LIU Y. Agrobacterium-mediated high-efficient transformation of Eucalyptus grandis clone Eg5[J]. Chin Bull Bot, 2013, 48(1): 87-93. DOI:10.3724/SP.J.1259.2013.00087.
[84]
OUYANG L J, LI L M. Effects of an inducible aiiA gene on disease resistance in Eucalyptus urophylla × Eucalyptus grandis[J]. Transgenic Res, 2016, 25(4): 441-452. DOI:10.1007/s11248-016-9940-x.
[85]
WANG X, LUO P, QIU Z, et al. Adventitious bud regeneration and agrobacterium tumefaciens-mediated genetic transformation of Eucalyptus urophylla × E. tereticornis interspecific hybrid[J]. In Vitro Cell Dev Biol-Plant, 2021. DOI:10.1007/s11627-021-10240-x.
[86]
LI Y, SUONTAMA M, BURDON R D, et al. Genotype by environment interactions in forest tree breeding: review of methodology and perspectives on research and application[J]. Tree Genet Genomes, 2017, 13(3): 60. DOI:10.1007/s11295-017-1144-x.
[87]
边黎明, 张慧春. 表型技术在林木育种和精准林业上的应用[J]. 林业科学, 2020, 56(6): 113-126.
BIAN L M, ZHANG H C. Application of phenotyping techniques in forest tree breeding and precision forestry[J]. Sci Silvae Sin, 2020, 56(6): 113-126. DOI:10.11707/j.1001-7448.20200612.
[88]
INGVARSSON P K, DAHLBERG H. The effects of clonal forestry on genetic diversity in wild and domesticated stands of forest trees[J]. Scand J For Res, 2019, 34(5): 370-379. DOI:10.1080/02827581.2018.1469665.
[89]
MATALLANA-RAMIREZ L P, WHETTEN R W, SANCHEZ G M, et al. Breeding for climate change resilience: a case study of loblolly pine (Pinus taeda L.) in North America[J]. Front Plant Sci, 2021, 12: 606908. DOI:10.3389/fpls.2021.606908.
[90]
甘四明. 林木分子育种研究的基因组学信息资源述评[J]. 南京林业大学学报(自然科学版), 2020, 44(4): 1-11.
GAN S M. A review on genomics information resources available for molecular breeding studies in forest trees[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(4): 1-11. DOI:10.3969/j.issn.1000-2006.202005036.
[91]
黄崇辉, 杨朝辉, 陈文平, 等. 桉树杂交育种技术在雷州林业局的应用[J]. 桉树科技, 2008, 25(2): 55-60.
HUANG C H, YANG Z H, CHEN W P, et al. Application of cross breeding technology of Eucalyptus in Leizhou Forestry Bureau[J]. Eucalypt Sci Technol, 2008, 25(2): 55-60.
[92]
GRATTAPAGLIA D, SILVA-JUNIOR O B, RESENDE R T, et al. Quantitative genetics and genomics converge to accelerate forest tree breeding[J]. Front Plant Sci, 2018, 9: 1693. DOI:10.3389/fpls.2018.01693.
[93]
谢耀坚. 真实的桉树[M]. 北京: 中国林业出版社, 2015: 76.
XIE Y J. Tell you the truth of eucalypts[M]. Beijing: China Forestry Publishing House, 2015: 76.
[94]
MYBURG A A, GRATTAPAGLIA D, TUSKAN G A, et al. The genome of Eucalyptus grandis[J]. Nature, 2014, 510(7505): 356-362. DOI:10.1038/nature13308.
[95]
DRIGUEZ P, BOUGOUFFA S, CARTY K, et al. Leaf Go: Leaf to Genome, a quick workflow to produce high-quality de novo plant genomes using long-read sequencing technology[J]. Genome Biol, 2021, 22: 256. DOI:10.1186/s13059-021-02475-z.

陈博雯研究员、欧阳乐军教授、尚秀华副研究员和范春节副研究员提供了部分文献。

PDF(1946 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/