Effects of arbuscular mycorrhizal fungi on the growth and physiological characteristics of Xanthoceras sorbifolium under salt stress

ZONG Jianwei, LI Cheng, ZHANG Jing, YANG Yuhua

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (4) : 168-176.

PDF(1486 KB)
PDF(1486 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (4) : 168-176. DOI: 10.12302/j.issn.1000-2006.202207008

Effects of arbuscular mycorrhizal fungi on the growth and physiological characteristics of Xanthoceras sorbifolium under salt stress

Author information +
History +

Abstract

【Objective】An investigation on the effects of arbuscular mycorrhizal (AM) fungi inoculation on the growth, physiological metabolism, and salt tolerance of Xanthoceras sorbifolium under salt stress was conducted.【Method】In this study, Funneliformis mosseae was used to infect seedlings and the pot experiment was carried out using one-year-old X. sorbifolium seedlings. We applied different concentrations of NaCl stress (0, 80, 160, 240, and 320 mmol/L). After the stress period, the biomass, colonization characteristics, and physiological indicators of the X. sorbifolium seedlings were measured.【Result】(1)The aboveground and underground biomasses of X. sorbifolium seedlings were enhanced significantly by AM symbiosis upon exposure to salinity. Increasing salinity significantly caused a decrease in the mycorrhizal colonization rate.(2)AM fungi inoculation significantly improved the contents of soluble protein, proline, glutathione(GSH), and ascorbic acid (AsA), and resulted in an increasement in the activities of superoxide dismutase (SOD) and peroxidase (POD), yet a reduction in the relative conductivity and accumulation of malondialdehyde (MDA).(3)Furthermore, two-way analysis of variance(Two-way ANOVA)demonstrated that the duration and concentration were interactively and significantly affecting correlated with the content of MDA, proline, soluble protein, and AsA (P<0.01). Based on principal component analysis(PCA), it was found that the inoculation group had the most profound impact on the physiological characteristics of X. sorbifolium at 320 mmol/L NaCl treatment.【Conclusion】This study found that inoculation with AM fungi may advance osmotic mediation ability, significantly improve the activities of antioxidant enzymes and the contents of antioxidants, and enhance the salt tolerance of plants and eventually promote the growth of X. sorbifolium seedlings under different salt concentrations.

Key words

arbuscular mycorrhizal fungi / salt stress / Xanthoceras sorbifolium / physiological characteristics

Cite this article

Download Citations
ZONG Jianwei , LI Cheng , ZHANG Jing , et al. Effects of arbuscular mycorrhizal fungi on the growth and physiological characteristics of Xanthoceras sorbifolium under salt stress[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(4): 168-176 https://doi.org/10.12302/j.issn.1000-2006.202207008

References

[1]
YANG Z, WANG Y, WEI X C, et al. Transcription profiles of genes related to hormonal regulations under salt stress in sweet sorghum[J]. Plant Mol Biol Rep, 2017, 35(6):586-599. DOI: 10.1007/s11105-017-1047-x.
[2]
赵艳兰, 曾鑫奕, 弓晋超, 等. 丛枝菌根真菌接种对白车轴草耐盐性的影响[J]. 草业学报, 2023, 32(3):179-188.
ZHAO Y L, ZENG X Y, GONG J C, et al. Effect of arbuscular mycorrhizal fungi on the salt tolerance of Trifolium repens[J]. Acta Pratac Sin, 2023, 32(3):179-188. DOI: 10.11686/cyxb2022101.
[3]
黎远东, 江海霞, 谢丽琼. 植物盐胁迫适应性机制研究进展[J]. 植物遗传资源学报, 2022, 23(6):1585-1593.
LI Y D, JIANG H X, XIE L Q. Review of plant adaptation mechanism to salt stress[J]. J Plant Genet Resour, 2022, 23(6):1585-1593.DOI: 10.13430/j.cnki.jpgr.20220518003.
[4]
王敏强, 吴沛鸿, 沈益康, 等. 盐胁迫下接种丛枝苗根真菌对甜菊生长和氮磷吸收的影响[J]. 应用与环境生物学报, 2018, 24(5):960-966.
WANG M Q, WU P H, SHEN Y K, et al. Effects of arbuscular mycorrhizal fungi on the growth and nitrogen and phosphorus acquisition of salt-stressed Stevia rebaudiana[J]. Chin J Appl Environ Biol, 2018, 24 (5):960-966.DOI: 10.19675/j.cnki.1006-687x.2017.12038.
[5]
LIU H G, WANG Y J, CHEN H, et al. Influence of Rhizoglomus irregulare on nutraceutical quality and regeneration of Lycium barbarum leaves under salt stress[J]. Can J Microbiol, 2017, 63(5):365-374.DOI: 10.1139/cjm-2016-0597.
[6]
韩冰, 贺超兴, 郭世荣. 丛枝菌根真菌对盐胁迫下黄瓜幼苗渗透调节物质含量和抗氧化酶活性的影响[J]. 西北植物学报, 2011, 31(12):2492-2497.
HAN B, HE X C, GUO S R. Effects of arbuscular mycorrhizal fungi on osmoregulation substance content and antioxidant enzyme activities of cucumber seedlings under salt stress[J]. Acta Bot Bor-Occid.Sin, 2011, 31(12):2492-2497.
[7]
崔令军, 刘瑜霞, 林健, 等. 盐胁迫下丛枝菌根真菌对桢楠根系生长和激素的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(4):119-124.
CUI L J, LIU Y X, LIN J, et al. Effects of arbuscular mycorrhizal fungi on roots growth and endogenous hormones of Phoebe zhennan under salt stress[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(4):119-124. DOI: 10.3969/j.issn.1000-2006.201912030.
[8]
AAKP, BABDA. Salt tolerance and salinity effects on plants: a review[J]. Ecotoxicol Environ Saf, 2005, 60(3):324-349.DOI: 10.1016/J.ECOENV.2004.06.010.
[9]
马小芬, 王兴芳, 李强, 等. 不同种源地文冠果叶片解剖结构比较及抗旱性分析[J]. 干旱区资源与环境, 2013, 27(6):92-96.
MA X F, WANG X F, LI Q, et al. The analysis of drought resistance and the comparison of anatomical structures of the leave of Xanthoceras sorbifolia Bunge introduced from different regions[J]. J Arid Land, 2013, 27(6):92-96. DOI: 10.13448/j.cnki.jalre.2013.06.013.
[10]
陈晓楠, 伊力努尔·艾力, 高文礼, 等. 盐胁迫下丛枝菌根真菌对疏叶骆驼刺幼苗生长和生理的影响[J]. 草业科学, 2022, 39(9):1763-1772.
CHEN X N, Yilinuer·Aili, GAO W L, et al. Effect of arbuscular mycorrhizal fungi on the growth and physiology of Alhagi sparsifolia seedling under salt stress[J]. Pratac Sci, 2022, 39(9):1763-1772.DOI: 10.11829/j.issn.1001-0629.2022-0215.
[11]
李勇德, 李旭, 金香花, 等. NaCl胁迫对文冠果幼苗生长和生理生化特征的影响[J]. 延边大学农学学报, 2015, 37(3):212-216.
LI Y D, LI X, JIN X H, et al. Growth and physiological characteristics of Xanthoceras sorbifolia seedlings under NaCl stress[J]. J Agric Sci, 2015, 37(3):5. DOI: 10.13478/J.CNKI.JASYU.2015.03.006.
[12]
曾婧祎, 朱凌骏, 马仕林, 等. 盐胁迫和接种丛枝菌根真菌对榉树根系的影响[J]. 东北林业大学学报, 2022, 50(9):11-17.
ZENG J Y, ZHU L J, MA S L, et al. Effects of salt stress on root system and rhizosphere soil of Zelkova serrata inoculated with arbuscular mycorrhizal fungi[J]. J Northeast For Univ, 2022, 50(9):11-17.DOI: 10.13759/j.cnki.dlxb.2022.09.006.
[13]
CARILLO P, MASTROLONARDO G, NACCA F, et al. Nitrogen metabolism in durum wheat under salinity: accumulation of proline and glycine betaine[J]. Funct Plant Biol, 2008, 35(5):412-426.DOI: 10.1071/FP08108.
[14]
潘晶, 黄翠华, 罗君, 等. 盐胁迫对植物的影响及 AMF 提高植物耐盐性的机制[J]. 地球科学进展, 2018, 33(4):361-372.DOI: 10.11867/j.issn.1001-8166.2018.04.0361.
PAN J, HUANG C H, LUO J, et al. Effects of salt stress on plant and the mechanism of arbuscular mycorrhizal fungi enhancing salt tolerance of plants[J]. Adv Earth Sci, 2018, 33(4) :361-372.DOI: 10.11867/j.issn.1001-8166.2018.04.0361.
[15]
孙守江, 唐艺涵, 马馼, 等. 紫花苜蓿种子吸胀期胚根线粒体AsA-GSH循环对低温胁迫的响应[J]. 草业学报, 2023, 32(3):152-162.
SUN S J, TANG Y H, MA W, et al. Response of mitochondria AsA-GSH cycle during alfalfa seed germination to low temperature stress[J]. Pratac Sin, 2023, 32(3):152-162. DOI: 10.11686/cyxb2022272.
[16]
刘润进, 陈应龙. 菌根学[M]. 北京: 科学出版社, 2007:365.
LIU R J, CHEN Y L. Mycorrhizology[M]. Beijing: Science Press, 2007:365.
[17]
马剑, 刘贤德, 张芬琴, 等. NaCl胁迫对文冠果生长及生理生化指标的影响[J]. 干旱区资源与环境, 2018, 32(2):182-187.DOI: 10.13448/j.cnki.jalre.2018.067.
MA J, LIU X D, ZHANG F Q. Effects of NaCl stress on growth and physiological-biochemical indexes of Xanthoceras sorbifolia[J]. Sci Silvae Sin, 2018, 32(2):182-187.DOI: 10.13448/j.cnki.jalre.2018.067.
[18]
周玲, 王乃江, 张丽楠. PEG胁迫对文冠果种子萌发和幼苗生理特性的影响[J]. 西北植物学报, 2012, 32(11):2293-2298.
ZHU L, WANG N J, ZHANG L N. Effect of PEG treatment on seed germination and growth of seedlings of Xanthoceras sorbifolia[J]. Acta Bot Bor-Occid.Sin, 2012, 32(11):2293-2298.
[19]
李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000:261-263.
LI H S. Principles and techniques of plant physiology and biochemical experiments[M]. Beijing: Higher Education Press, 2000:261-263.
[20]
张明轩, 黄苏珍, 绳仁立, 等. NaCl胁迫对马蔺生长及生理生化指标的影响[J]. 植物资源与环境学报, 2011, 20(1):46-52.
ZHNG M X, HUANG S Z, SHENG R L, et al. Effects of NaCl stress on growth and physiological-biochemical indexes of Iris lactea var. Chinensis[J]. J Plant Resour&Environ, 2011, 20(1):46-52.
[21]
GRIFFITH O W. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine[J]. Anal Biochem, 1980, 106(1):207-212. DOI: 10.1016/0003-2697(80)90139-6.
[22]
LAW M Y, CHARLES S A, HALLIWELL B. Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. The effect of hydrogen peroxide and of Paraquat[J]. Biochem J, 1983, 210(3):899-903.DOI: 10.1042/bj2100899.
[23]
曹岩坡, 代鹏, 戴素英. 丛枝菌根真菌(AMF)对盐胁迫下芦笋植株渗透调节物质及抗氧化酶活性的影响[J]. 西南大学学报(自然科学版), 2017, 39(5):43-48.
CAO Y P, DAI P, DAI S Y. Effect of arbuscular mycorrhizal fungi on osmoregulation substances antioxidant enzyme activities of asparagus plant under salt stress[J]. J Southwest Univ(Nat Sci Ed), 2017, 39(5):43-48. DOI: 10.13718/j.cnki.xdzk.2017.05.007.
[24]
ZHAO S S, ZHANG Q K, LIU M Y, et al. Regulation of plant responses to salt stress[J]. Int J Mol Sci, 2021, 22(9).DOI: 10.3390/ijms22094609.
[25]
徐瑶, 樊艳, 俞云鹤, 等. 丛枝菌根真菌对盐胁迫下红花幼苗生长及耐盐生理指标的影响[J]. 生态学杂志, 2014, 33(12):3395-3402.
XU Y, FAN Y, YU Y H, et al. Effects of arbuscular mycorrhizal fungus on the growth and physiological salt tolerance parameters of Carthamus tinctorius seedlings under salt stress[J]. Chin J Ecol, 2014, 33 (12):3395-3402. DOI: 10.13292/j.1000-4890.2014.0305.
[26]
马仕林, 曹鹏翔, 张金池, 等. 盐胁迫下AMF对榉树幼苗生长和光合特性的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(1):122-130.
MA S L, CAO P X, ZHANG J C, et al. Effects of AMF on the growth and photosynthetic characteristics of Zelkova serrata under salt stress[J]. J Nanjing For Univ (Nat Sci Ed), 2022, 46(1):122-130. DOI: 10.12302/J.issn1000-2006.202010026.
[27]
朱燕芳, 王延秀, 胡亚, 等. 多效唑对水分胁迫下苹果砧木八棱海棠光合及抗氧化酶活性等生理特性的影响[J]. 干旱地区农业研究, 2018, 36 (4):178-186.
ZHU Y F, WANG Y X, HU Y, et al. Effects of paclobutrazol on photosynthetic and antioxidant enzyme activities and other physiological characteristics of Malus robusta Rehd. under water stress[J]. Agric Res Arid Areas, 2018, 36(4):178-186.DOI: 10.7606/j.issn.1000-7601.2018.04.26.
[28]
EHLERT B, HINCHA D K. Chlorophyll fluorescence imaging accurately quantifies freezing damage and cold acclimation responses in Arabidopsis leaves[J]. Plant Methods, 2008, 4(1):1-7. DOI: 10.1186/1746-4811-4-12.
[29]
龚远博, 胡吉怀, 胡丁猛, 等. 丛枝菌根真菌对盐碱胁迫下杜梨幼苗生长和生理特性的影响[J]. 西北植物学报, 2022, 42(8):1320-1329.
GONG, Y B, HU J H, HU D M, et al. Effects of arbuscular mycorrhizal fungi on the growth and physiological traits of Pyrus betulifolia under salt-alkali stress[J]. Acta Bot Bor-Occid.Sin, 2022, 42(8):1320-1329. DOI: 10.7606/j.issn.1000-4025.2022.08.1320.
[30]
朱志梅, 杨持. 沙漠化过程中四个共有种的生长和抗氧化系统酶类变化[J]. 应用生态学报, 2004(12):2261-2266.
ZHU Z M, YANG C. Changes of four common plant populations growth and their anti-oxidative enzymatic system in desertification process[J]. Chin J Appl Ecol, 2004(12):2261-2266. DOI :10.13287/j.1001-9332.2004.0466.
[31]
郭卫珍, 张亚利, 奉树成. NaCl胁迫对2个山茶品种盐害及叶绿素荧光特性的影响[J]. 江苏农业学报, 2021, 37(3):562-569.
GUO W Z, ZHANG Y L, FENG S C. Effects of NaCl stress on salt injury and chlorophyll fluorescence characteristics of two Camellia cultivars[J]. Jiangsu J Agr Sci, 2021, 37(3):562-569.DOI: 10.3969/j.issn.1000-4440.2021.03.003.
[32]
黄相玲, 林妃妃, 张明月, 等. 盐胁迫对小叶榄仁幼苗生长和渗透调节物质含量的影响[J]. 南方农业学报, 2018, 49(7):1364-1369.
HUANG X L, LIN F F, ZHANG M Y, et al. Effects of salt stress on growth and osmoregulatory substances in Terminalia neotaliala Capuron seedlings[J]. J South Agric, 2018, 49(7):1364-1369.DOI: 10.3969/j.issn.2095-1191.2018.07.16.
[33]
常丽丽, 彭存智, 王丹, 等. 盐芥叶片应答盐胁迫的蛋白质组学分析[J]. 江苏农业学报, 2022, 38(1):49-64.
CHANG L L, PENG C Z, WANG D, et al. Proteomics analysis of Eutrema salsugineum leaves in response to salt stress[J]. Jiangsu J Agr Sci, 2022, 38(1):49-64. DOI: 10.3969/j.issn.1000-4440.2022.01.006.
[34]
慕铭. 中国柽柳品种‘鲁柽1号’对盐胁迫的生理响应[D]. 泰安: 山东农业大学, 2021.
MU M. Physiological response of Tamarix chinensis Lour. Cultivar ‘Lucheng No. 1’to salt stress[D]. Taian: Shandong Agricultural University, 2021.
[35]
贾旭梅, 朱燕芳, 王海, 等. 垂丝海棠应对盐碱复合胁迫的生理响应[J]. 生态学报, 2019, 39(17):6349-6361.
JIANG X M, ZHU Y F, WANG H, et al. Study on physiological response of Malus halliana to saline-alkali stress[J]. Acta Ecol Sin, 2019, 39(17):6349-6361.DOI: 10.5846/stxb201804230919.
[36]
王英男, 陶爽, 华晓雨, 等. 盐碱胁迫下AM真菌对羊草生长及生理代谢的影响[J]. 生态学报, 2018, 38(6):2187-2194.
WANG Y N, TAO S, HUA X Y, et al. Effects of arbuscular mycorrhizal fungi on the growth and physiological metabolism of Leymus chinensis under salt-alkli stress[J]. Acta Ecol Sin, 2018, 38(6):2187-2194.DOI: 10.5846/stxb201610192141.
[37]
王穗子, 金则新, 李月灵, 等. 铜胁迫条件下AMF对海州香薷光合色素含量、抗氧化能力和膜脂过氧化的影响[J]. 生态学报, 2015, 35(23):7699-7708.
WANG S Z, JIN Z X, LI Y L, et al. Effects of arbuscular mycorrhizal fungi inoculation on the photosynthetic pigment contents, anti-oxidation capacity and membrane lipid peroxidation of Elsholtzia splendens leaves under copper stress[J]. Acta Ecol Sin, 2015, 35(23):7699-7708.DOI: 10.5846/stxb201407251511.
[38]
徐嘉美, 郭静怡, 吴杨, 等. AM真菌对留兰香和常夏石竹耐盐性的影响[J]. 西北植物学报, 2021, 41(12):2014-2112.
XU J M, GUO J Y, WU Y, et al. Effects of AM fungi on the salt tolerance of Mentha spicata and Dianthus plumarius[J]. Acta Bot Bor-Occid.Sin, 2021, 41(12):2014-2112. DOI: 10.7606/j.issn.1000-4025.2021.12.2104.
[39]
EVELIN H, KAPOOR R. Arbuscular mycorrhizal symbiosis modulates antioxidant response in salt-stressed Trigonella foenum-graecum plants[J]. Mycorrhiza, 2014, 24(3):197-208.DOI: 10.1007/s00572-013-0529-4.
[40]
宰学明, 郝振萍, 张焕仕, 等. NaCl胁迫下AM真菌对滨梅叶片中抗坏血酸-谷胱甘肽循环的影响[J]. 植物生理学报, 2013, 49(1):41-46.
ZAI X M, HAO Z P, ZHANG H S, et al. Effects of AM fungi on Ascorbate-Glutathione cycle metabolism in leaves of Prunus maritima Marshall under NaCl stress[J]. Acta Phytophysiol Sin, 2013, 49(1):41-46. DOI: 10.13592/j.cnki.ppj.2013.01.014.
[41]
姜磊, 李焕勇, 张芹, 等. AM真菌对盐碱胁迫下杜梨幼苗生长与生理代谢的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(6):152-160.
JIANG L, LI H Y, ZHANG Q, et al. Effects of arbuscular mycorrhiza fungi on the growth and physiological metabolism of Pyrus betulaefolia Bunge seedlings under saline-alkaline stress[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(6):152-160.DOI: 10.3969/j.issn.1000-2006.202001045.
[42]
王建伟, 何晓玲, 崔金霞, 等. 外源硒对NaCl胁迫下加工番茄幼苗膜脂过氧化和AsA-GSH循环的影响[J]. 新疆农业科学, 2014, 51(10):1814-1820.
WANG J W, HE X L, CUI J X, et al. Effect of exogenous selenium on membrane lipid peroxidation and ascorbate-glutathione cycle of tomato seedlings under salt stress[J]. Xinjiang Agric Sci, 2014, 51(10):1814-1820. DOI: 10.6048/j.issn.1001-4330.2014.10.010.
PDF(1486 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/