Alkali stress tolerance analysis of four Rhododendron cultivars

GONG Rui, XIA Xi, ZHANG Chunying

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (2) : 113-120.

PDF(2942 KB)
PDF(2942 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (2) : 113-120. DOI: 10.12302/j.issn.1000-2006.202207014

Alkali stress tolerance analysis of four Rhododendron cultivars

Author information +
History +

Abstract

【Objective】 This study aims to analyze the tolerance differences of Rhododendron cultivars to alkali stress and effects on accumulation and distribution of mineral elements in different organs of rhododendron, and investigate the response mechanism of rhododendron to alkali stress. The results of this study provide a theoretical basis for breeding alkali-tolerant varieties. 【Method】 Alkaline salt solution Na2CO3-NaHCO3 (volumn fraction 1∶9) was used to adjust the pH value of deionized water to 7.52 and 9.14, respectively. Four Rhododendron cultivars (Rhododendron ‘Zihe’, R. ‘Kirin’, R. ‘Yanzhi Mi’ and R. ‘Fenxiu’) were treated with pot watering of alkaline solution for two months, and the growth of plants, as well as physiological and biochemical indexes such as chlorophyll content, root vigor, ferric reductase activity and mineral content were measured. 【Result】 The different varieties of Rhododendron were significantly different in terms of their tolerance to alkali stress. Those plants with weak resistance showed symptoms of alkali damage, such as the yellowing of leaves or leaves drying and falling off, root blackening and even death. With an increase in alkaline stress, the high increment and dry matter ratio of the different varieties decreased significantly. The analysis of plant dry matter quality showed that the dry matter quality of the underground part of R. ‘Kirin’ and R. ‘Yanzhi Mi’ decreased significantly with the increasing degree of alkali stress; R. ‘Zihe’ significantly decreased under high alkali stress, and R. ‘Fenxiu’ had no significant difference among different treatments. The chlorophyll content and root activity of rhododendron decreased significantly, and root iron reductase activity increased. The root activity of R. ‘Zihe’ and R. ‘Fenxiu’ showed no significantly difference under different alkali intensities, while the root activity of R. ‘Kirin’ and R. ‘Yanzhi Mi’ significantly decreased compared with the control. Only R. ‘Zihe’ showed significantly higher root iron reductase activity than the control under high alkali stress, whereas the other three cultivars showed no significantly difference among different treatments. An increase in alkali stress affected the accumulation and distribution of different mineral elements in the rhododendron. Na and Fe ions content significantly accumulated in the root system, whereas K+ and Ca2+ were concentrated in the leaves, and the content decreased significantly. The content of Na+ in the leaves varied among cultivars. After alkali stress treatment, the content of Na+ in leaves of R. ‘Yanzhi Mi’ and R. ‘Kirin’ increased significantly, but there was no significant change in R. ‘Zihe’ and R. ‘Fenxiu. ’ 【Conclusion】 Based on the above indexes, R. ‘Zihe’ and R. ‘Fenxiu’ had strong alkali resistance, followed by R. ‘Yanzhi Mi’, and the alkali resistance of R. ‘Kirin’ was weak.

Key words

Rhododendron cultivar / alkali stress / mineral element / alkali tolerance

Cite this article

Download Citations
GONG Rui , XIA Xi , ZHANG Chunying. Alkali stress tolerance analysis of four Rhododendron cultivars[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(2): 113-120 https://doi.org/10.12302/j.issn.1000-2006.202207014

References

[1]
KINSMAN D J J. Rhododendrons in Yunnan, China: pH of associated soils[J]. J Ame Rhod Soc, 1999, 53(1):10-14. https://scholar.lib.vt.edu/ejournals/JARS/v53n1/v53n1-kinsman.html.
[2]
SHI D C, SHENG Y M. Effect of various salt-alkaline mixed stress conditions on sunflower seedlings and analysis of their stress factors[J]. Environ Exp Bot, 2005, 54(1):8-21.DOI: 10.1016/j.envexpbot.2004.05.003.
[3]
GUO R, SHI L X, DING X M, et al. Effects of saline and alkaline stress on germination,seedling growth,and ion balance in wheat[J]. Agron J, 2010, 102(4):1252-1260.DOI: 10.2134/agronj2010.0022.
[4]
YANG C W, SHI D C, WANG D L. Comparative effects of salt and alkali stresses on growth,osmotic adjustment and ionic balance of an alkali-resistant halophyte Suaeda glauca (Bge.)[J]. Plant Growth Regul, 2008, 56(2):179-190.DOI: 10.1007/s10725-008-9299-y.
[5]
张潭, 唐达, 李思思, 等. 盐碱胁迫对枸杞幼苗生物量积累和光合作用的影响[J]. 西北植物学报, 2017, 37(12):2474-2482.
ZHANG T, TANG D, LI S S, et al. Responses of growth and photosynthesis of Lycium barbarum L.seedling to salt-stress and alkali-stress[J]. Acta Bot Boreali Occidentalia Sin, 2017, 37(12):2474-2482.DOI: 10.7606/j.issn.1000-4025.2017.12.2474.
[6]
刘杰, 张美丽, 张义, 等. 人工模拟盐、碱环境对向日葵种子萌发及幼苗生长的影响[J]. 作物学报, 2008, 34(10):1818-1825.
LIU J, ZHANG M L, ZHANG Y, et al. Effects of simulated salt and alkali conditions on seed germination and seedling growth of sunflower (Helianthus annuus L.)[J]. Acta Agron Sin, 2008, 34(10):1818-1825.DOI: 10.3321/j.issn:0496-3490.2008.10.019.
[7]
杨雨桦, 鉴晶晶, 邱小蝶, 等. 复合盐碱胁迫对OT百合生长和生理特性的影响[J]. 南京林业大学学报(自然科学版), 2022, 46(4):117-126.
YANG Y H, JIAN J J, QIU X D, et al. Effects of combined saline-alkali stress on physiological and biochemical characteristics of OT hybrid lily[J]. J Nanjing For Univ (Nat Sci Ed), 2022, 46(4):117-126.DOI:10.12302/j.issn.1000-2006.202105041.
[8]
SCARIOT V, CASER M, KOBAYASHI N. Evergreen azaleas tolerant to neutral and basic soils:breeding potential of wild genetic resources[J]. Acta Hortic, 2013(990):287-291.DOI: 10.17660/actahortic.2013.990.34.
[9]
姚元涛, 刘谦, 张丽霞, 等. 山东棕壤茶园幼龄茶树叶片黄化病因诊断与防治研究[J]. 植物营养与肥料学报, 2009, 15(1):219-224.
YAO Y T, LIU Q, ZHANG L X, et al. Diagnosis and prevention of tea leaf etiolation of young trees planted in brown soil of Shandong Province[J]. Plant Nutr Fertil Sci, 2009, 15(1):219-224.DOI: 10.3321/j.issn:1008-505X.2009.01.032.
[10]
JIANG Y Q, ZENG Q L, WEI J G, et al. Growth,fruit yield,photosynthetic characteristics,and leaf microelement concentration of two blueberry cultivars under different long-term soil pH treatments[J]. Agronomy, 2019, 9(7):357.DOI: 10.3390/agronomy9070357.
[11]
FU L N, CHAI L J, DING D K, et al. A novel Citrus rootstock tolerant to iron deficiency in calcareous soil[J]. J Amer Soc Hort Sci, 2016, 141(2):112-118.DOI: 10.21273/jashs.141.2.112.
[12]
TAVAKKOLI E, FATEHI F, COVENTRY S, et al. Additive effects of Na+ and Cl- ions on barley growth under salinity stress[J]. J Exp Bot, 2011, 62(6):2189-2203.DOI: 10.1093/jxb/erq422.
[13]
闫永庆, 刘兴亮, 王崑, 等. 白刺对不同浓度混合盐碱胁迫的生理响应[J]. 植物生态学报, 2010, 34(10):1213-1219.
YAN Y Q, LIU X L, WANG K, et al. Effect of complex saline-alkali stress on physiological parameters of Nitratia tangutorum[J]. Chin J Plant Ecol, 2010, 34(10):1213-1219.DOI: 10.3773/j.issn.1005-264x.2010.10.010.
[14]
XIAO C X, CUI X L, LU H Y, et al. Comparative adaptive strategies of old and young leaves to alkali-stress in hexaploid wheat[J]. Environ Exp Bot, 2020, 171:103955.DOI: 10.1016/j.envexpbot.2019.103955.
[15]
GUO J X, LU X Y, TAO Y F, et al. Comparative ionomics and metabolic responses and adaptive strategies of cotton to salt and alkali stress[J]. Front Plant Sci, 2022, 13:871387.DOI: 10.3389/fpls.2022.871387.
[16]
刘攀, 耿兴敏, 宦智群, 等. 盐碱胁迫对4种杜鹃属植物种子萌发和幼苗生长的影响[J]. 中国野生植物资源, 2021, 40(1):36-42.
LIU P, GENG X M, HUAN Z Q, et al. Effects of salt or alkali stress on seed germination and seedling growth of four Rhododendron species[J]. Chinese Wild Plant Resources, 2021, 40(1):36-42..
[17]
徐倩, 李华雄, 鲜小林, 等. β-氨基丁酸对NaHCO3胁迫下杜鹃光合特性和抗氧化系统的影响[J]. 林业科学研究, 2018, 31(2):133-140.
XU Q, LI H X, XIAN X L, et al. Effects of BABA on photosynthetic characteristics and antioxidative system in Rhododendron under NaHCO3 stress[J]. Forest Research, 2018, 31(2):133-140.
[18]
刘攀, 耿兴敏, 赵晖. 碱胁迫下杜鹃花抗氧化体系的响应及亚细胞分布[J]. 园艺学报, 2020, 47(5):916-926.
LIU P, GENG X M, ZHAO H. Subcellular distribution and responses of antioxidant systems in leaves of three Rhododendron cultivars under alkali stress[J]. Acta Hortic Sin, 2020, 47(5):916-926.DOI: 10.16420/j.issn.0513-353x.2019-0314.
[19]
张宪政. 植物叶绿素含量测定:丙酮乙醇混合液法[J]. 辽宁农业科学, 1986(3):26-28.
ZHANG X Z. Determination of chlorophyll content in plants: acetone-ethanol mixed solution method[J]. Liaoning Agric Sci, 1986(3):26-28.
[20]
王璐. 缺铁响应转录因子OsbHLH133的功能和缺铁诱导乙烯合成分子机理的研究[D]. 杭州: 浙江大学, 2013.
WANG L. Functional analysis of Fe-related transcription factor OsbHLH133 & the molecular mechanism of ethylene svnthesis induced by Fe deficiency[D]. Hangzhou: Zhejiang University, 2013.
[21]
国家林业局. 森林土壤分析方法:LY/T 1210—1275-1999[S]. 北京: 中国标准出版社, 1999:279-304.
National Forestry Administration. Forest soil analysis methods: LY/T 1210—1275-1999[S]. Beijing: Standards Press of China, 1999: 279-304.
[22]
MARQUES D M, JÚNIOR V V, DA SILVA A B, et al. Copper toxicity on photosynthetic responses and root morphology of Hymenaea courbaril L.(Caesalpinioideae)[J]. Water Air Soil Pollut, 2018, 229(5):138.DOI: 10.1007/s11270-018-3769-2.
[23]
TURNER A J, ARZOLA C I, NUNEZ G H. High pH stress affects root morphology and nutritional status of hydroponically grown Rhododendron (Rhododendron spp.)[J]. Plants, 2020, 9(8):1019.DOI: 10.3390/plants9081019.
[24]
RÖMHELD V, MARSCHNER H. Function of micronutrients in plants[M]//Micronutrients in Agriculture. Madison,WI, USA: Soil Science Society of America, 2018:297-328.DOI: 10.2136/sssabookser4.2ed.c9.
[25]
SUSIN S, ABADIA A, GONZALEZ-REYES J A, et al. The pH requirement for in vivo activity of the iron-deficiency-induced turbo ferric chelate reductase (a comparison of the iron-deficiency-induced iron reductase activities of intact plants and isolated plasma membrane fractions in sugar beet)[J]. Plant Physiol, 1996, 110(1):111-123.DOI: 10.1104/pp.110.1.111.
[26]
杨静慧, 杨恩芹. 介质及根际pH值对苹果植株失绿的影响研究[J]. 西南农业大学学报, 1995, 17(4):355-358.
YANG J H, YANG E Q. Chlorosis of Malus as influnced by iron and rhizosphere pH[J]. J Southwest Agric Univ, 1995, 17(4):355-358.
[27]
周晓今, 陈茹梅, 范云六. 植物对铁元素吸收、运输和储存的分子机制[J]. 作物研究, 2012, 26(5):605-610.
ZHOU X J, CHEN R M, FAN Y L. Molecular mechanism of iron uptake,translocation and storage in plants[J]. Crop Res, 2012, 26(5):605-610.DOI: 10.3969/j.issn.1001-5280.2012.05.55.
[28]
JOLLEY V D, COOK K A, HANSEN N C, et al. Plant physiological responses for genotypic evaluation of iron efficiency in strategy Ⅰ and strategy Ⅱ plants:a review[J]. J Plant Nutr, 1996, 19(8/9):1241-1255.DOI: 10.1080/01904169609365195.
[29]
孙振元, 徐文忠, 赵梁军, 等. 高pH值和铁素对毛白杜鹃和迎红杜鹃根系Fe3+还原酶活性的影响[J]. 核农学报, 2005, 19(6):456-460.
SUN Z Y, XU W Z, ZHAO L J, et al. The effects of high-pH and iron on root Fe3+ reductase activity of Rhododendron mucronatum and Rhododendron simsii[J]. Acta Agric Nucleatae Sin, 2005, 19(6):456-460.DOI: 10.3969/j.issn.1000-8551.2005.06.011.
[30]
武维华. 植物生理学[M]. 2版. 北京: 科学出版社, 2008.
WU W H. Phytophysiology[M]. 2nd ed. Beijing: Science Press, 2008.
[31]
刘杰. 盐碱胁迫对向日葵体内矿质营养的影响[J]. 北方园艺, 2014(2):1-5.
LIU J. Effects of simulated salt and alkali conditions on the mineral nutrition of Helianthus annuus L[J]. North Hortic, 2014(2):1-5.
[32]
黄清荣, 祁琳, 柏新富. 根环境供氧状况对盐胁迫下棉花幼苗光合及离子吸收的影响[J]. 生态学报, 2018, 38(2):528-536.
HUANG Q R, QI L, BAI X F. Effects of rhizosphere aeration on photosynthesis and ion absorption in cotton seedlings under salt stress[J]. Acta Ecol Sin, 2018, 38(2):528-536.DOI: 10.5846/stxb201607261519.
[33]
RÖMHELD V. The chlorosis paradox:Fe inactivation as a secondary event in chlorotic leaves of grapevine[J]. J Plant Nutr, 2000, 23(11/12):1629-1643.DOI: 10.1080/01904160009382129.
[34]
郝志, 田纪春, 姜小苓. 小麦主要亲缘种籽粒的Fe、Zn、Cu、Mn含量及其聚类分析[J]. 作物学报, 2007, 33(11):1834-1839.
HAO Z, TIAN J C, JIANG X L. Analyses of Fe,Zn,Cu,and Mn contents in grains and grouping based on the contents for main kindred germplasm of common wheat (Triticum aestivum)[J]. Acta Agron Sin, 2007, 33(11):1834-1839.DOI: 10.3321/j.issn:0496-3490.2007.11.015.
[35]
李玉梅, 郭修武, 姜云天. 碱性盐胁迫对牛叠肚幼苗离子积累和运输的影响[J]. 贵州农业科学, 2016, 44(2):61-66.
LI Y M, GUO X W, JIANG Y T. Effects of alkaline salt stress on ion accumulation and transportation of Rubus crataegifolius seedlings[J]. Guizhou Agric Sci, 2016, 44(2):61-66.
[36]
王树凤, 胡韵雪, 李志兰, 等. 盐胁迫对弗吉尼亚栎生长及矿质离子吸收、运输和分配的影响[J]. 生态学报, 2010, 30(17):4609-4616.
WANG S F, HU Y X, LI Z L, et al. Effects of NaCl stress on growth and mineral ion uptake,transportation and distribution of Quercus virginiana[J]. Acta Ecol Sin, 2010, 30(17):4609-4616.
[37]
项越, 赵淑婷, 吴昊, 等. 虎尾草不同器官矿质元素含量对碱化环境的响应[J]. 草业科学, 2022, 39(3):511-519.
XIANG Y, ZHAO S T, WU H, et al. Effects of alkali stress on the content of mineral elements in different organs of Chloris virgata[J]. Prata-cultural Sci, 2022, 39(3):511-519.
[38]
LÓPEZ-AGUILAR R, ORDUÑO-CRUZ A, LUCERO-ARCE A, et al. Response to salinity of three grain legumes for potential cultivation in arid areas[J]. Soil Sci Plant Nutr, 2003, 49(3):329-336.DOI: 10.1080/00380768.2003.10410017.
[39]
郭淑华. NaHCO3胁迫对‘左山一’杂交砧木株系生长发育及有机酸分泌的影响[D]. 泰安: 山东农业大学, 2018.
GUO S H. Effect of NaHCO3 stress on plant growth and organic acid secretion of ‘Zuoshan1’ hybrid rootstock strains[D]. Tai'an: Shandong Agricultural University, 2018.
[40]
郭瑞, 周际, 杨帆, 等. 小麦根系在碱胁迫下的生理代谢反应[J]. 植物生态学报, 2017, 41(6):683-692.
GUO R, ZHOU J, YANG F, et al. Metabolic responses of wheat roots to alkaline stress[J]. Chin J Plant Ecol, 2017, 41(6):683-692.DOI: 10.17521/cjpe.2016.0136.
PDF(2942 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/