Study on wood variation of provenances and clones of Castanopsis hystrix

YANG Yuanmu, LI Na, CHEN Xinyu, XU Fang, PAN Wen, ZHANG Weihua

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (6) : 41-50.

PDF(1051 KB)
PDF(1051 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (6) : 41-50. DOI: 10.12302/j.issn.1000-2006.202207026

Study on wood variation of provenances and clones of Castanopsis hystrix

Author information +
History +

Abstract

【Objective】This study investigated the variation patterns of wood traits among the provenances and clones of Castanopsis hystrix to clarify the genetic characteristics of these traits. It provided a theoretical basis for the genetic improvement of wood traits and for the scientific processing and rational utilization of wood.【Method】The physical and chemical wood traits of 226 clones from 17 provenances in the C. hystrix germplasm bank were investigated. Twelve wood traits from different provenances and clones within those provenances were analyzed using variance analysis, and heritability was calculated based on the genetic variance of provenances and clones within provenances. Spearman correlation analysis, principal component analysis, and cluster analysis were conducted for different provenances of C. hystrix, considering geographical location and meteorological factors.【Result】Variance analysis revealed significant differences in fiber length, fiber width, wood basic density, lignin content, cellulose content and hemicellulose content among provenances. Significant differences were also observed in fiber length, fiber width, length-to-width ratio, wood basic density, fiber cavity diameter, cavity-to-diameter ratio, lignin content and hemicellulose content among clones within provenances. The heritability of wood basic density, cellulose and hemicellulose content was higher among provenances. In contrast, the heritability of the length-width ratio, fiber length, and wood basic density were higher among clones within provenances, all above 0.5, indicating that these traits were highly genetically controlled at both provenance and clonal levels. The average basic density of all provenance wood was above 0.5, indicating that C. hystrix wood was a hardwood material with high overall hardness and density. Correlation analysis results indicated that fiber length was positively correlated with wood basic density and negatively correlated with lignin content. Lignin content was negatively correlated with cellulose content, and cellulose content was negatively correlated with hemicellulose content. There is also a correlation between various source material traits and geo-climatic factors, which showed that higher longitude corresponded to higher lignin content. Higher latitude corresponds to a lower basic density of wood, and with the increase in altitude, the lignin content decreases gradually. Fiber length negatively correlated with the average annual temperature; thus, fiber length could decrease with an increase in the average annual temperature. In general, provenance was strongly correlated with geographical factors but not an obvious correlation with environmental factors. In principal component analysis, the 12 traits were integrated into six traits with significant genetic variation among provenances, and the cumulative contribution rate of the first three principal components was 62.76%, which could retain most of the information on phenotypic traits. The 17 provenances were divided into three groups using the hierarchical clustering method. Class I included six provenances characterized by low fiber length, wood basic density, vascular bundle content, and high lignin content. Class Ⅱ contained five provenances characterized by high fiber width, lignin content, cellulose content, and low fiber length and wood basic density. Class Ⅲ included six provenances characterized by high fiber length, width, wood basic density, cellulose content, and low hemicellulose content.【Conclusion】The genetic variation of the material traits in the provenances and clones of C. hystrix is rich and holds good potential for genetic improvement. Fiber length and length-width ratio should be selected as superior traits in clones during the improvement process, while wood basic density, cellulose, and hemicellulose can be improved by selection among provenances. The wood quality is mainly affected by longitude, latitude and altitude. Tree species growing in high longitude, low latitude and altitude have better wood quality. These results provide a theoretical basis for the conservation and utilization of C. hystrix germplasm resources, lay a foundation for screening clones with excellent wood quality, and offer a reference for the future improvement and breeding of C. hystrix germplasm traits.

Key words

Castanopsis hystrix / provenances / clones / woody properties / genetic variation

Cite this article

Download Citations
YANG Yuanmu , LI Na , CHEN Xinyu , et al . Study on wood variation of provenances and clones of Castanopsis hystrix[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(6): 41-50 https://doi.org/10.12302/j.issn.1000-2006.202207026

References

[1]
HANNRUP B, CAHALAN C, CHANTRE G, et al. Genetic parameters of growth and wood quality traits in Picea abies[J]. Scand J For Res, 2004, 19(1):14-29.DOI: 10.1080/02827580310019536.
[2]
NEALE D B, SEWELL M M, BROWN G R. Molecular dissection of the quantitative inheritance of wood property traits in loblolly pine[J]. Ann For Sci, 2002, 59(5/6):595-605.DOI: 10.1051/forest:2002045.
[3]
ARMSTRONG J P, SKAAR C, DE ZEEUW C. The effect of specific gravity on several mechanical properties of some world woods[J]. Wood Sci Technol, 1984, 18(2):137-146.DOI: 10.1007/bf00350472.
[4]
莫家兴, 华慧, 翁怀峰, 等. 柳杉全同胞家系生长和材性的遗传变异及优良家系选择[J]. 中南林业科技大学学报, 2019, 39(10):40-47.
MO J X, HUA H, WENG H F, et al. Growth and wood property genetic variation analysis and superior family selection of Cryptomeria full-sib family[J]. J Cent South Univ For Technol, 2019, 39(10):40-47.DOI: 10.14067/j.cnki.1673-923x.2019.10.007.
[5]
ZOBEL B J, BUIJTENEN J P. Wood variation:its causes and control[M]. Berlin, Heidelberg:Springer,1989.
[6]
姜笑梅, 骆秀琴, 殷亚方, 等. 不同湿地松种源木材材性遗传变异的研究[J]. 林业科学, 2002, 38(3):130-135.
JIANG X M, LUO X Q, YIN Y F, et al. Genetic variation in wood properties of 18 provenances of Pinus elliottii[J]. Sci Silvae Sin, 2002, 38(3):130-135.DOI: 10.3321/j.issn:1001-7488.2002.03.023.
[7]
王克胜, 卞学瑜, 佟永昌, 等. 杨树无性系生长和材性的遗传变异及多性状选择[J]. 林业科学, 1996, 32(2):111-117.
WANG K S, BIAN X Y, TONG Y C, et al. Genetic variation and multi-character selection of poplar clone growth and wood properties[J]. Sci Silvae Sin, 1996, 32(2):111-117.
[8]
宋婉, 张志毅, 续九如. 毛白杨无性系木材基本密度遗传变异研究[J]. 林业科学, 2000, 36(S1):125-130.
SONG W, ZHANG Z Y, XU J R. Study on inheritance and variation of wood basic density of Populus tomentosa Carr. clones[J]. Sci Silvae Sin, 2000, 36(S1):125-130.DOI: 10.3321/j.issn:1001-7488.2000.Z1.019.
[9]
张方秋, 朱积余, 黄永权, 等. 红锥中心分布区种源早期生长研究[J]. 广东林业科技, 2005, 21(4):9-12.
ZHANG F Q, ZHU J Y, HUANG Y Q, et al. Study on early growth of Castanopsis hystrix provenances from its central distribution[J]. For Sci Technol, 2005, 21(4):9-12.
[10]
邵梅香. 南亚热带红锥与西南桦生态化学计量学特征研究[D]. 南宁: 广西大学, 2012.
SHAO M X. Ecological stoichiometry characteristics of Castanopsis hystrix and Atula alnoides in south subtropical area of China[D]. Nanning: Guangxi University, 2012.DOI: 10.7666/d.y2160705.
[11]
彭其龙. 南方次生林珍贵乡土树种的价值评价和高效利用研究[D]. 长沙: 中南林业科技大学, 2014.
PENG Q L. Study on data fusion and models research in the hardwood resource with Hunan Province[D]. Changsha: Central South University of Forestry & Technology, 2014.
[12]
吕建雄, 骆秀琴, 蒋佳荔, 等. 红锥和西南桦人工林木材力学性质的研究[J]. 北京林业大学学报, 2006, 28(2):118-122.
J X, LUO X Q, JIANG J L, et al. Mechanical properties of Castanopsis hystrix and Betula alnoides plantation wood[J]. J Beijing For Univ, 2006, 28(2):118-122.DOI: 10.3321/j.issn:1000-1522.2006.02.021.
[13]
蒋燚, 李志辉, 朱积余, 等. 红锥家系木材密度等物理性状的遗传及变异性分析[J]. 中南林业科技大学学报, 2012, 32(11):9-13,20.
JIANG Y, LI Z H, ZHU J Y, et al. Analysis on genetic and variability of wood density and other physical properties of Castanopsis hystrix family[J]. J Cent South Univ For Technol, 2012, 32(11):9-13,20.DOI: 10.14067/j.cnki.1673-923x.2012.11.029.
[14]
蒋燚, 王勇, 刘晓蔚, 等. 红锥生长过程中心材变化特征研究[J]. 西南林业大学学报, 2015, 35(4):53-57.
JIANG Y, WANG Y, LIU X W, et al. The heartwood variation characteristics of growing processes of Castanopsis hystrix[J]. J Southwest For Univ (Nat Sci), 2015, 35(4):53-57.DOI: 10.11929/j.issn.2095-1914.2015.04.009
[15]
张凤良, 张方秋, 段安安, 等. 17个红锥种源生长、干形及木材基本密度变异分析[J]. 广东林业科技, 2013, 29(2):17-22.
ZHANG F L, ZHANG F Q, DUAN A A, et al. Analysis of growth, dry form and wood basic density variation of 17 conifer provenances[J]. Guangdong forestry science and technology, 2013, 29(2):17-22.
[16]
ZOBEL B. Improving Wood density of shot-rotation southern pine[J]. TAPPI Journal. 1978, 61(3): 41-44.
[17]
李盛. 大叶栎种源生长与材性遗传变异及选择研究[D]. 南宁: 广西大学, 2016.
LI S. Reserach on genetic variations of growth traits and wood properties in Castanopsis fissa provenances and selection of provenance[D]. Nanning: Guangxi University, 2016.
[18]
国家质量监督检验检疫总局, 中国国家标准化管理委员会. 木材密度测定方法:GB/T 1933—2009[S]. 北京: 中国标准出版社, 2009.
General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Method for determination of the density of wood:GB/T 1933—2009[S]. Beijing: Standards Press of China, 2009.
[19]
PIETER B, NADEZHDA B, TOMOYUKI F, et al. Iawa list of microscopic features for softwood identification[J]. IAWA J, 2004, 25(1):1-70.DOI: 10.1163/22941932-90000349.
[20]
纪楷滨. 烟梗木质素的含量测定方法研究及结构表征[D]. 广州: 华南理工大学, 2013.
JI K B. Study on content determination method and structural characterization of lignin in tobacco stem[D]. Guangzhou: South China University of Technology, 2013.
[21]
李金花, 宋红竹, 牛正田, 等. 辽西地区黑杨派纸浆材无性系生长与材性综合评价[J]. 林业科学研究, 2008, 21(2):206-211.
LI J H, SONG H Z, NIU Z T, et al. Comprehensive judgement of section aigeiros clones in western Liaoning Province for pulp wood[J]. For Res, 2008, 21(2):206-211.DOI: 10.3321/j.issn:1001-1498.2008.02.013.
[22]
江锡兵, 宋跃朋, 马开峰, 等. 杨树杂种无性系生长与光合生理遗传变异研究[J]. 西北植物学报, 2011, 31(9):1779-1785.
JIANG X B, SONG Y P, MA K F, et al. Genetic variation of growth traits and photosynthetic physiology of Populus hybrid clones[J]. Acta Bot Boreali Occidentalia Sin, 2011, 31(9):1779-1785.
[23]
BALTUNIS B S, GAPARE W J, WU H X. Genetic parameters and genotype by environment interaction in radiata pine for growth and wood quality traits in Australia[J]. Silvae Genet, 2010, 59(1/6):113-124.DOI:10.1515/sg-2010-0014.
[24]
廖焕琴, 张卫华, 张方秋, 等. 红锥1.5代改良种子园无性系生长和形质性状变异分析[J]. 林业与环境科学, 2016, 32(4):23-27.
LIAO H Q, ZANG W H, ZHANG F Q, et al. Analysis on variation of clonal growth and form traits for 1.5 generation improved seed orchard of Castanopsis hystrix[J]. Forestry and Environmental Science, 2016, 32(4):23-27. DOI: 10.3969/j.issn.1006-4427.2016.04.005.
[25]
杨会肖, 廖焕琴, 杨晓慧, 等. 2代种子园红锥生长和形质性状遗传变异分析[J]. 华南农业大学学报, 2017, 38(5):81-85.
YANG H X, LIAO H Q, YANG X H, et al. Genetic variation analysis of growth and form traits of Castanopsis hystrix in the second generation seed orchard[J]. J South China Agric Univ, 2017, 38(5):81-85.DOI: 10.7671/j.issn.1001-411X.2017.05.014.
[26]
邵林, 郭庆梅, 周凤琴, 等. 不同种质忍冬植株形态特征比较[J]. 时珍国医国药, 2012, 23(3):739-740.
SHAO L, GUO Q M, ZHOU F Q, et al. Comparative study on botanical morphological character of germplasm resources of Lonicera japonica Thunb[J]. Lishizhen Med Mater Med Res, 2012, 23(3):739-740.DOI: 10.3969/j.issn.1008-0805.2012.03.104.
[27]
周凤琴, 李佳, 冉蓉, 等. 我国金银花主产区种质资源调查[J]. 现代中药研究与实践, 2010, 24(3):21-25.
ZHOU F Q, LI J, RAN R, et al. Investigate on the germplasm resources for main produce area of Floslonicerae japonicae in China[J]. Res Pract Chin Med, 2010, 24(3):21-25.DOI: 10.13728/j.1673-6427.2010.03.003.
[28]
徐速, 曾凡锁, 赵兴堂, 等. 不同种源水曲柳木材主要化学成分含量变异分析[J]. 西北林学院学报, 2016, 31(2):234-238.
XU S, ZENG F S, ZHAO X T, et al. Analysis on the variation of main chemical components of different source of Fraxinus mandschurica[J]. J Northwest For Univ, 2016, 31(2):234-238.DOI: 10.3969/j.issn.1001-7461.2016.02.39.
[29]
任可, 张盟, 万佳艺, 等. 不同种源福建柏木材的管胞形态及化学成分[J]. 森林与环境学报, 2022, 42(1):81-87.
REN K, ZHANG M, WAN J Y, et al. Wood tracheid morphology and chemical composition of Fokienia hodgirtsii from different provenances[J]. J For Environ, 2022, 42(1):81-87.DOI: 10.13324/j.cnki.jfcf.2022.01.010.
[30]
尹明宇. 内蒙古西伯利亚杏遗传变异及优良种源、家系、单株选择[D]. 北京: 中国林业科学研究院, 2017.
YIN M Y. High-level genetic variation and superior provenances, families, and individuals selection of Siberian apricot (Armeniaca sibirica)[D]. Beijing: Chinese Academy of Forestry, 2017.
[31]
陈丽君, 刘明骞, 廖柏勇, 等. 苦楝不同种源苗期生长性状和生长节律研究[J]. 西南林业大学学报, 2014, 34(4):1-7.
CHEN L J, LIU M Q, LIAO B Y, et al. Growth traits and growth rhythm of Melia azedarach seedlings from different provenances[J]. J Southwest For Univ, 2014, 34(4):1-7.DOI: 10.3969/j.issn.2095-1914.2014.04.001.
[32]
杨晓霞, 冷平生, 郑健, 等. 暴马丁香不同种源种子和幼苗的表型性状变异及其与地理-气候因子的相关性[J]. 植物资源与环境学报, 2016, 25(3):80-89.
YANG X X, LENG P S, ZHENG J, et al. Variation of phenotypic traits of seed and seedling of Syringa reticulata subsp.amurensis from different provenances and their correlations with geographic-climatic factors[J]. J Plant Resour Environ, 2016, 25(3):80-89.
[33]
张翠琴, 姬志峰, 林丽丽, 等. 五角枫种群表型多样性[J]. 生态学报, 2015, 35(16):5343-5352.
ZHANG C Q, JI Z F, LIN L L, et al. Phenotypic diversity of Acer mono maxim population[J]. Acta Ecol Sin, 2015, 35(16):5343-5352.DOI: 10.5846/stxb201404010613.
[34]
向贵生, 王其刚, 蹇洪英, 等. 云南川滇蔷薇天然居群表型多样性分析[J]. 云南大学学报(自然科学版), 2018, 40(4):786-794.
XIANG G S, WANG Q G, JIAN H Y, et al. Phenotypic diversity of natural population of Rosa soulieana in Yunnan[J]. J Yunnan Univ (Nat Sci Ed), 2018, 40(4):786-794.DOI: 10.7540/j.ynu.20170224.
[35]
翟新翠. 大花序桉的遗传变异与适应性研究[D]. 南宁: 广西大学, 2007.
ZHAI X C. Study on genetic variation and adaptability of Eucalyptus cloeziana[D]. Nanning: Guangxi University, 2007.
[36]
王秀花, 陈柳英, 马丽珍, 等. 7年生木荷生长和木材基本密度地理遗传变异及种源选择[J]. 林业科学研究, 2011, 24(3):307-313.
WANG X H, CHEN L Y, MA L Z, et al. Geographical provenance variation of growth and wood basic density of 7-year-old Schima superba and its provenance selection[J]. For Res, 2011, 24(3):307-313.DOI: 10.13275/j.cnki.lykxyj.2011.03.014.
PDF(1051 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/