Prediction of potential distribution areas of the endangered Cathaya argyrophylla based on shared socio-economic pathways (SSPs) climate scenarios

LUO Chuying, SHE Jiyun, TANG Zichao

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (1) : 161-168.

PDF(3468 KB)
PDF(3468 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (1) : 161-168. DOI: 10.12302/j.issn.1000-2006.202207027

Prediction of potential distribution areas of the endangered Cathaya argyrophylla based on shared socio-economic pathways (SSPs) climate scenarios

Author information +
History +

Abstract

【Objective】This study explored key factors affecting the occurrence of endangered Cathaya argyrophylla populations and predicted their potential distribution areas in the present and future, providing a theoretical basis for the conservation and introduction of C. argyrophylla natural resources. 【Method】Based on 41 sample sites of C. argyrophylla, the MaxEnt model was used to predict the potential distribution areas of C. argyrophylla under the current scenario by combining climate, topography, soil and radiation factor data, and to assess the effects of different environmental factors on the geographical distribution of C. argyrophylla. Also, future shared socio-economic pathways (SSPs) were used as climate data to predict future changes in the growth distribution areas of C. argyrophylla. 【Result】Under the current climate conditions, the core suitable area for C. argyrophylla is approximately 1.325 × 105 km2, accounting for approximately 1.38% of China’s land area. It has a cumulative contribution rate of 91.9% to the distribution of C. argyrophylla due to precipitation in the driest month, downward ultraviolet radiation, altitude, and the lowest temperature in the coldest month. They are the dominant factor affecting the geographical distribution of C. argyrophylla. If the survival probability is greater than 0.5 as the adaptation range, the main environmental conditions suitable for the survival of C. argyrophylla are: precipitation in the driest month is 18.03~215.63 mm, downward ultraviolet radiation is 1 070 728~1 437 806 W/m2, altitude is 493.68~1 731.10 m, and the lowest temperature in the coldest month is -1.01~4.05 ℃. In the future, under SSP1-2.6, SSP2-4.5, and SSP5-8.5, the core suitable areas for C. argyrophylla will increase. However, they will still be centered in Guizhou, Hunan, Guangxi, and Chongqing.【Conclusion】Precipitation during the driest month and downward ultraviolet radiation were the main factors influencing the potential distribution of C. argyrophylla. Under the three future climate scenarios, the core area suitable for C. argyrophylla showed an expanding trend. The expansion areas were mainly distributed in Yunnan, Zhejiang, Fujian and Guizhou. The intermediate development scenario (SSP2-4.5) was more suitable for the growth and reproduction of C. argyrophylla. This study provides an important theoretical basis for the conservation of C. argyrophylla planting resources.

Key words

Cathaya argyrophylla / shared socio-economic pathways(SSPs) / potential distribution area / climatic factor / endangered plant

Cite this article

Download Citations
LUO Chuying , SHE Jiyun , TANG Zichao. Prediction of potential distribution areas of the endangered Cathaya argyrophylla based on shared socio-economic pathways (SSPs) climate scenarios[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(1): 161-168 https://doi.org/10.12302/j.issn.1000-2006.202207027

References

[1]
张明珠, 叶兴状, 刘益鹏, 等. 基于SSPs预测格木在中国的潜在地理分布[J]. 北京林业大学学报, 2022, 44(4):54-65.
ZHANG M Z, YE X Z, LIU Y P, et al. Predicting the potential geographical distribution of Erythrophleum fordii in China based on SSPs[J]. J Beijing For Univ, 2022, 44(4):54-65.DOI: 10.12171/j.1000-1522.20210308.
[2]
FAN B H, TAO W H, QIN G H, et al. Soil micro-climate variation in relation to slope aspect,position,and curvature in a forested catchment[J]. Agric For Meteorol, 2020, 290:107999.DOI: 10.1016/j.agrformet.2020.107999.
[3]
叶兴状, 张明珠, 赖文峰, 等. 基于MaxEnt优化模型的闽楠潜在适宜分布预测[J]. 生态学报, 2021, 41(20):8135-8144.
YE X Z, ZHANG M Z, LAI W F, et al. Prediction of potential suitable distribution of Phoebe bournei based on MaxEnt optimization model[J]. Acta Ecol Sin, 2021, 41(20):8135-8144.DOI: 10.5846/stxb202007131822.
[4]
KRIEGLER E, O’NEILL B C, HALLEGATTE S, et al. The need for and use of socio-economic scenarios for climate change analysis:a new approach based on shared socio-economic pathways[J]. Glob Environ Change, 2012, 22(4):807-822.DOI: 10.1016/j.gloenvcha.2012.05.005.
[5]
陈春谛. 被遗忘的城市“生境”:重庆市墙体自生植物调查分析[J]. 生态学报, 2020, 40(2):473-483.
CHEN C D. Forgotten urban habitats:analysis of spontaneous vegetation on the urban walls of Chongqing City[J]. Acta Ecol Sin, 2020, 40(2):473-483.DOI: 10.5846/stxb201804130848.
[6]
刘鹏, 何万存, 黄小春, 等. 花榈木研究现状及保护对策[J]. 南方林业科学, 2017, 45(3):45-48.
LIU P, HE W C, HUANG X C, et al. Research status and conservation strategy of Ormosia henryi[J]. South China For Sci, 2017, 45(3):45-48.DOI: 10.16259/j.cnki.36-1342/s.2017.03.012.
[7]
刘冬, 刘顶鼎, 马丽, 等. 花榈木提取物对慢性不可预知应激小鼠认知损害的影响[J]. 生物化学与生物物理进展, 2020, 47(8):768-779.
LIU D, LIU D D, MA L, et al. Effect of Malus henryi extract on cognitive impairment in mice with chronic unpredictable stress[J]. Prog Biochem Biophys, 2020, 47(8):768-779.DOI: 10.16476/j.pibb.2020.0291.
[8]
杨军, 王婷, 许仕, 等. 珍稀濒危树种银杉的研究进展[J]. 中国园艺文摘, 2014, 30(12):53-55.
YANG J, WANG T, XU S, et al. Research progress of rare and endangered tree species-Cryptomeria fortunei[J]. Chin Hortic Abstr, 2014, 30(12):53-55.DOI: 10.3969/j.issn.1672-0873.2014.12.022
[9]
李乔明, 张耀尹, 冯育才, 等. 银杉播种苗木不同年份生长量研究[J]. 种子, 2019, 38(1):90-93.
LI Q M, ZHANG Y Y, FENG Y C, et al. Growth research on Cathaya argyrophylla in different growth years[J]. Seed, 2019, 38(1):90-93.DOI: 10.16590/j.cnki.1001-4705.2019.01.090.
[10]
谢宗强, 陈伟烈. 中国特有植物银杉的濒危原因及保护对策[J]. 植物生态学报, 1999, 23(1):1.
XIE Z Q, CHEN W L. Endangered reasons and protection countermeasures of the endemic plant Cryptomeria argyrophylla in China[J]. Acta Phytoecol Sin, 1999, 23(1): 1.DOI: 10.3321/j.issn:1005-0094.2002.01.016.
[11]
CARPENTER G, GILLISON A N, WINTER J. DOMAIN:a flexible modelling procedure for mapping potential distributions of plants and animals[J]. Biodivers Conserv, 1993, 2(6):667-680.DOI: 10.1007/BF00051966.
[12]
宋红敏, 张清芬, 韩雪梅, 等. CLIMEX:预测物种分布区的软件[J]. 昆虫知识, 2004, 41(4):379-387.
SONG H M, ZHANG Q F, HAN X M, et al. CLIMEX:professional biological software for predicting potential distribution of species[J]. Entomol Knowl, 2004, 41(4):379-387.
[13]
PHILLIPS S J, ANDERSON R P, SCHAPIRE R E. Maximum entropy modeling of species geographic distributions[J]. Ecol Model, 2006, 190(3/4):231-259.DOI: 10.1016/j.ecolmodel.2005.03.026.
[14]
吕彤, 郭倩, 丁永霞, 等. 基于MaxEnt模型预测未来气候变化情景下中国区域水稻潜在适生区的变化[J]. 中国农业气象, 2022, 43(4):262-275.
LV T, GUO Q, DING Y X, et al. Predicting potential suitable planting area of rice in China under future climate change scenarios using the MaxEnt model[J]. Chin J Agrometeorology, 2022, 43(4):262-275.DOI: 10.3969/j.issn.1000-6362.2022.04.002.
[15]
邢丁亮, 郝占庆. 最大熵原理及其在生态学研究中的应用[J]. 生物多样性, 2011, 19(3):295-302.
XING D L, HAO Z Q. The principle of maximum entropy and its applications in ecology[J]. Biodivers Sci, 2011, 19(3):295-302.DOI: 10.3724/SP.J.1003.2011.08318.
[16]
陈禹衡, 吕一维, 殷晓洁. 气候变化下西南地区12种常见针叶树种适宜分布区预测[J]. 南京林业大学学报(自然科学版), 2019, 43(6): 113-120.
CHEN Y H, Y W, YIN X J. Predicting habitat suitability of 12 coniferous forest tree species in southwest China based on climate change[J]. J Nanjing Fore Univ (Nat Sci Ed), 2019, 43(6): 113-120.DOI: 10.3969/j.issn.1000-2006.201808045.
[17]
杨楠, 马东源, 钟雪, 等. 基于MaxEnt模型的四川王朗国家级自然保护区蓝马鸡栖息地适宜性评价[J]. 生态学报, 2020, 40(19):7064-7072.
YANG N, MA D Y, ZHONG X, et al. Habitat suitability assessment of Blue Eared-Pheasant based on MaxEnt modeling in Wanglang National Nature Reserve,Sichuan Province[J]. Acta Ecol Sin, 2020, 40(19):7064-7072.DOI: 10.5846/stxb201908081666.
[18]
韩淑敏, 闫伟, 杨雪栋, 等. 白榆在我国的潜在分布格局及未来变化[J]. 南京林业大学学报(自然科学版), 2023, 47(3):103-110.
HAN S M, YAN W, YANG X D, et al. Simulation and analyses of ecological characteristics of Cerasus conradinae adaptability area[J]. J Nanjing Fore Univ (Nal Sci Ed), 2023, 47(3):103-110. DOI: 10.12302/j.issn.1000-2006.202101024.
[19]
周炳江, 王玉洁, 马长乐, 等. 基于MaxEnt与ArcGIS的云南榧树潜在生境分析[J]. 生态学报, 2022, 42(11):4485-4493.
ZHOU B J, WANG Y J, MA C L, et al. Analysis of potential habitat of Torreya yunnanensis based on MaxEnt and ArcGIS[J]. Acta Ecol Sin, 2022, 42(11):4485-4493.DOI: 10.5846/stxb202106261698
[20]
王茹琳, 李庆, 封传红, 等. 基于MaxEnt的西藏飞蝗在中国的适生区预测[J]. 生态学报, 2017, 37(24):8556-8566.
WANG R L, LI Q, FENG C H, et al. Predicting potential ecological distribution of Locusta migratoria tibetensis in China using MaxEnt ecological niche modeling[J]. Acta Ecol Sin, 2017, 37(24):8556-8566.
[21]
刘倩, 齐增湘, 周永, 等. 我国银杉潜在分布区预测及适宜性评价[J]. 安徽农学通报, 2019, 25(18):53-57.
LIU Q, QI Z X, ZHOU Y, et al. Prediction and suitability evaluation of potential distribution area of Chinese silver fir[J]. Anhui Agric Sci Bull, 2019, 25(18):53-57.DOI: 10.16377/j.cnki.issn1007-7731.2019.18.024.
[22]
冉巧, 卫海燕, 赵泽芳, 等. 气候变化对孑遗植物银杉的潜在分布及生境破碎度的影响[J]. 生态学报, 2019, 39(7):2481-2493.
RAN Q, WEI H Y, ZHAO Z F, et al. Impact of climate change on the potential distribution and habitat fragmentation of the relict plant Cathaya argyrophylla Chun et Kuang[J]. Acta Ecol Sin, 2019, 39(7):2481-2493.DOI: 10.5846/stxb201802010282.
[23]
HIJMANS R J, CAMERON S E, PARRA J L, et al. Very high resolution interpolated climate surfaces for global land areas[J]. Int J Climatol, 2005, 25(15):1965-1978.DOI: 10.1002/joc.1276.
[24]
侯沁文, 白海艳, 李云玲, 等. 马铃薯甲虫在中国的适生区[J]. 生态学杂志, 2020, 39(10):3311-3319.
HOU Q W, BAI H Y, LI Y L, et al. Suitable area of Leptinotarsa decemlineata(Coleoptera:Chrysomelidae) in China[J]. Chin J Ecol, 2020, 39(10):3311-3319.DOI: 10.13292/j.1000-4890.202010.023.
[25]
YANG X Q, KUSHWAHA S P S, SARAN S, et al. Maxent modeling for predicting the potential distribution of medicinal plant,Justicia adhatoda L.in Lesser Himalayan foothills[J]. Ecol Eng, 2013, 51:83-87.DOI: 10.1016/j.ecoleng.2012.12.004.
[26]
刘维, 赵儒楠, 圣倩倩, 等. 矮牡丹在中国的地理分布及潜在分布区预测[J]. 北京林业大学学报, 2021, 43(12):83-92.
LIU W, ZHAO R N, SHENG Q Q, et al. Geographical distribution and potential distribution area prediction of Paeonia jishanensis in China[J]. J Beijing For Univ, 2021, 43(12):83-92.DOI: 10.12171/j.1000?1522.20200360.
[27]
SWETS J A. Measuring the accuracy of diagnostic systems[J]. Science, 1988, 240(4857):1285-1293.DOI: 10.1126/science.3287615.
[28]
赵儒楠, 何倩倩, 褚晓洁, 等. 气候变化下千金榆在我国潜在分布区预测[J]. 应用生态学报, 2019, 30(11):3833-3843.
ZHAO R N, HE Q Q, CHU X J, et al. Prediction of potential distribution of Carpinus cordata in China under climate change[J]. Chin J Appl Ecol, 2019, 30(11):3833-3843.DOI: 10.13287/j.1001-9332.201911.020.
[29]
龙莉, 高超, 杨瑞, 等. 贵州大沙河濒危植物银杉资源现状及保护策略[J]. 广东蚕业, 2022, 56(3):55-57.
LONG L, GAO C, YANG R, et al. Current situation and protection strategy of endangered plant silver fir in Dashahe in Guizhou Province[J]. Guangdong Sericulture, 2022, 56(3):55-57.DOI: 10.3969/j.issn.2095-1205.2022.03.18.
[30]
李雪, 潘学军, 张文娥. UV辐射对植物多酚代谢的影响[J]. 山地农业生物学报, 2016, 35(6):54-60.
LI X, PAN X J, ZHANG W E. Effect of UV radiation on the metabolism and the pathway of plant polyphenol[J]. J Mt Agric Biol, 2016, 35(6):54-60.DOI: 10.15958/j.cnki.sdnyswxb.2016.06.009.
[31]
张旺锋, 樊大勇, 谢宗强, 等. 濒危植物银杉幼树对生长光强的季节性光合响应[J]. 生物多样性, 2005, 13(5):387-397.
ZHANG W F, FAN D Y, XIE Z Q, et al. The seasonal photosynthetic responses of seedlings of the endangered plant Cathaya argyrophylla to different growth light environments[J]. Chin Biodivers, 2005, 13(5):387-397.
[32]
陈凯军. 国宝“银杉”[J]. 林业与生态, 2020(7):F0004.
[33]
周满, 张昌文. 践行初心使命谱写绿色赞歌:记“银杉之父”罗仲春[J]. 林业与生态, 2020(12):22-23.
ZHOU M, ZHANG C W. Carrying out the initial mission and writing a green hymn—Luo Zhongchun,the “Father of Silver fir”[J]. For Ecol, 2020(12):22-23.DOI: 10.13552/j.cnki.lyyst.2020.12.009.
[34]
魏书精, 罗斯生, 罗碧珍, 等. 气候变化背景下森林火灾发生规律研究[J]. 林业与环境科学, 2020, 36(2):133-143.
WEI S J, LUO S S, LUO B Z, et al. Occurrence regularity of forest fire under the background of climate change[J]. Guangdong For Sci Technol, 2020, 36(2):133-143.
[35]
姜大膀, 富元海.2 ℃全球变暖背景下中国未来气候变化预估[J]. 大气科学, 2012, 36(2):234-246.
JIANG D B, FU Y H. Climate change over China with a 2 ℃ global warming[J]. Chin J Atmos Sci, 2012, 36(2):234-246.DOI: 10.3878/j.issn.1006-9895.2011.11074.
[36]
张杰, 曹丽格, 李修仓, 等. IPCC AR5中社会经济新情景(SSPs)研究的最新进展[J]. 气候变化研究进展, 2013, 9(3):225-228.
ZHANG J, CAO L G, LI X C, et al. Advances in shared socio-economic pathways in IPCC AR5[J]. Progressus Inquisitiones DE Mutat Clim, 2013, 9(3):225-228.DOI: 10.3969/j.issn.1673-1719.2013.03.012
[37]
郑芊卉, 周春国, 韦海航, 等. 各国应对气候变化自主贡献目标及林业对策[J]. 世界林业研究, 2019, 32(2):1-6.
ZHENG Q H, ZHOU C G, WEI H H, et al. National determined contribution in response to climate change and its forestry countermeasures[J]. World For Res, 2019, 32(2):1-6.DOI: 10.13348/j.cnki.sjlyyj.2019.0010.y.
PDF(3468 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/