Characterization of IpSAD gene family in Idesia polycarpa and functional identification

GONG Jue, BI Hao, YANG Wenlu, WANG Dongming, WANG Lehui, JIANG Yuanzhong, MA Tao

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (6) : 261-270.

PDF(39815 KB)
PDF(39815 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (6) : 261-270. DOI: 10.12302/j.issn.1000-2006.202207034

Characterization of IpSAD gene family in Idesia polycarpa and functional identification

Author information +
History +

Abstract

【Objective】Stearoyl-ACP Δ9 desaturase (SAD) is a key enzyme that determines the composition of fatty acids. The whole-genome identification of Idesia polycarpa SAD genes can provide targets to improve fatty acid compositions by genetic methods.【Method】HMM and Blastp were used to identify IpSAD genes in the I. polycarpa genome. The gene structures, phylogenetic relationship, conserved motifs, physicochemical characters of IpSADs, and cis-regulatory element in these gene promoters were analyzed and predicted by MEGA X, MEME and PlantCare online software, respectively. The MCSCANX software was used to reveal the common linear relationship of SAD genes in I. polycarpa and P. trichocarpa. The tissue expression pattern of IpSAD genes was constructed according to RNA-seq, and the function of these genes was identified by a virus-induced gene silencing (VIGS) system.【Result】(1)A total of seven IpSAD genes (IpSAD1-7) were identified in the I. polycarpa genome, and these family members shared high sequence similarity and conserved domains. (2)Aphylogenetic tree indicated that IpSAD members were divided into three clades, which were consistent with the classification of the homologs in Arabidopsis thaliana. In particular,IpSAD2, IpSAD3 and IpSAD4 were closer to AtSSI2, which is the key enzyme of oleic acid biosynthesis. (3)The cis-regulatory elements in the promoters of IpSAD genes included elements of light and abscisic acid responses. (4)These IpSAD genes were divided into three categories according to their tissue expression patterns. The IpSAD genes in Classes Ⅰ and Ⅱ were expressed with a low level in most tissues, whereas Class Ⅲ genes showed a high level in all tested tissues. (5) Silencing IpSAD genes using VIGS significantly reduced the oleic acid content of leaves.Remarkably, the oleic acid content in IpSAD3 silenced leaves was decreased by up to 76%.【Conclusion】The characteristics of each IpSAD gene was clarified, and their functions in oleic acid synthesis were determined. Our findings can aid in the investigation of the biosynthesis mechanisms of oleic acid and total oil in I. polycarpa.

Key words

Idesia polycarpa / stearoyl-acyl carrier protein Δ9 desaturase (SAD) / oleic acid / virus induced gene silencing(VIGS)

Cite this article

Download Citations
GONG Jue , BI Hao , YANG Wenlu , et al . Characterization of IpSAD gene family in Idesia polycarpa and functional identification[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(6): 261-270 https://doi.org/10.12302/j.issn.1000-2006.202207034

References

[1]
ZHANG L, XI Z X, WANG M C, et al. Plastome phylogeny and lineage diversification of Salicaceae with focus on poplars and willows[J]. Ecol Evol, 2018, 8(16):7817-7823.DOI:10.1002/ece3.4261.
[2]
LI M M, WANG D Y, ZHANG L, et al. Intergeneric relationships within the family Salicaceae s.l.based on plastid phylogenomics[J]. Int J Mol Sci, 2019, 20(15):E3788.DOI:10.3390/ijms20153788.
[3]
YANG F X, SU Y Q, LI X H, et al. Preparation of biodiesel from Idesia polycarpa var. vestita fruit oil[J]. Ind Crops Prod, 2009, 29(2/3):622-628.DOI:10.1016/j.indcrop.2008.12.004.
[4]
FAN R S, CAI G, ZHOU X Y, et al. Characterization of diacylglycerol acyltransferase 2 from Idesia polycarpa and function analysis[J]. Chem Phys Lipids, 2021, 234:105023.DOI:10.1016/j.chemphyslip.2020.105023.
[5]
COX C, MANN J, CHISHOLM A, et al. Effects of coconut oil,butter and safflower oil on lipids and lipoproteins in persons with moderately elevated cholesterol levels[J]. Atherosclerosis, 1994, 109(1/2):146-147.DOI:10.1016/0021-9150(94)93598-X.
[6]
SIRI-TARINO P W, SUN Q, HU F B, et al. Saturated fatty acids and risk of coronary heart disease:modulation by replacement nutrients[J]. Curr Atheroscler Rep, 2010, 12(6):384-390.DOI:10.1007/s11883-010-0131-6.
[7]
RODRÍGUEZ M F R, SÁNCHEZ-GARCÍA A, SALAS J J, et al. Characterization of soluble acyl-ACP desaturases from Camelina sativa,Macadamia tetraphylla and Dolichandra unguiscati[J]. J Plant Physiol, 2015, 178:35-42.DOI:10.1016/j.jplph.2015.01.013.
[8]
GE Y, CHANG Y, XU W L, et al. Sequence variations in the FAD2 gene in seeded pumpkins[J]. Genet Mol Res, 2015, 14(4):17482-17488.DOI:10.4238/2015.December.21.19.
[9]
FOX B G, SHANKLIN J, SOMERVILLE C, et al. Stearoyl-acyl carrier protein delta 9 desaturase from Ricinus communis is a diiron-oxo protein[J]. Proc Natl Acad Sci USA, 1993, 90(6):2486-2490.DOI:10.1073/pnas.90.6.2486.
[10]
LIGHTNER J, WU J, BROWSE J. A mutant of Arabidopsis with increased levels of stearic acid[J]. Plant Physiol, 1994, 106(4):1443-1451.DOI:10.1104/pp.106.4.1443.
[11]
KNUTZON D S, THOMPSON G A, RADKE S E, et al. Modification of Brassica seed oil by antisense expression of a stearoyl-acyl carrier protein desaturase gene[J]. Proc Natl Acad Sci USA, 1992, 89(7):2624-2628.DOI:10.1073/pnas.89.7.2624.
[12]
CRAIG W, LENZI P, SCOTTI N, et al. Transplastomic tobacco plants expressing a fatty acid desaturase gene exhibit altered fatty acid profiles and improved cold tolerance[J]. Transgenic Res, 2008, 17(5):769-782.DOI:10.1007/s11248-008-9164-9.
[13]
HORIGUCHI G, IWAKAWA H, KODAMA H, et al. Expression of a gene for plastid w-3 fatty acid desaturase and changes in lipid and fatty acid compositions in light-and dark-grown wheat leaves[J]. Physiol Plant, 1996, 96(2):275-283.
[14]
WANG C, CHIN C K, CHEN A. Expression of the yeast Δ9 desaturase gene in tomato enhances its resistance to powdery mildew[J]. Physiol Mol Plant Pathol, 1998, 52(6):371-383.DOI:10.1006/pmpp.1998.0158.
[15]
SHAH J, KACHROO P, NANDI A, et al. A recessive mutation in the Arabidopsis SSI2 gene confers SA-and NPR1-independent expression of PR genes and resistance against bacterial and oomycete pathogens[J]. Plant J, 2001, 25:563-574.DOI:10.1046/j.1365-313x.2001.00992.x.
[16]
KACHROO A, LAPCHYK L, FUKUSHIGE H, et al. Plastidial fatty acid signaling modulates salicylic acid-and jasmonic acid-mediated defense pathways in the Arabidopsis ssi2 mutant[J]. Plant Cell, 2003, 15(12):2952-2965.DOI:10.1105/tpc.017301.
[17]
KACHROO A, VENUGOPAL S C, LAPCHYK L, et al. Oleic acid levels regulated by glycerolipid metabolism modulate defense gene expression in Arabidopsis[J]. PNAS, 2004, 101(14):5152-5157.DOI:10.1073/pnas.0401315101.
[18]
MADI L A, WANG X J, KOBILER I, et al. Stress on avocado fruits regulates Δ9-stearoyl ACP desaturase expression,fatty acid composition,antifungal diene level and resistance to Colletotrichum gloeosporioides attack[J]. Physiol Mol Plant Pathol, 2003, 62(5):277-283.DOI:10.1016/S0885-5765(03)00076-6.
[19]
KUMAR S, STECHER G, LI M, et al. MEGA X:Molecular evolutionary genetics analysis across computing platforms[J]. Mol Biol Evol, 2018, 35(6):1547-1549.DOI:10.1093/molbev/msy096.
[20]
NICHOLAS K B. GeneDoc: analysis and visualization of genetic variation, EMBNEW[J]. Embnew News, 1997, 4. DOI:10.11118/actaun201361041061.
[21]
WANG Y P, TANG H B, DEBARRY J D, et al. MCScanX:a toolkit for detection and evolutionary analysis of gene synteny and collinearity[J]. Nucleic Acids Res, 2012, 40(7):e49.DOI:10.1093/nar/gkr1293.
[22]
CHEN C J, CHEN H, ZHANG Y, et al. TBtools:an integrative toolkit developed for interactive analyses of big biological data[J]. Mol Plant, 2020, 13(8):1194-1202.DOI:10.1016/j.molp.2020.06.009.
[23]
SUN P C, JIAO B B, YANG Y Z, et al. WGDI:a user-friendly toolkit for evolutionary analyses of whole-genome duplications and ancestral karyotypes[J]. BioRxiv, 2021, DOI:10.1101/2021.04.29.441969.
[24]
KIM D, LANGMEAD B, SALZBERG S L. HISAT:a fast spliced aligner with low memory requirements[J]. Nat Methods, 2015, 12(4):357-360.DOI:10.1038/nmeth.3317.
[25]
PERTEA M, PERTEA G M, ANTONESCU C M, et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads[J]. Nat Biotechnol, 2015, 33(3):290-295.DOI:10.1038/nbt.3122.
[26]
段郅臻, 王童欣, 王健. VIGS技术在观赏植物花色研究上的应用[J]. 分子植物育种, 2021, 19(24):8170-8178.
DUAN Z Z, WANG T X, WANG J. Applications of virus-induced gene silencing(VIGS) technology in flower color research of ornamental plants[J]. Mol Plant Breed, 2021, 19(24):8170-8178.DOI:10.13271/j.mpb.019.008170.
[27]
YE J, QU J, BUI H T N, et al. Rapid analysis of Jatropha curcas gene functions by virus-induced gene silencing[J]. Plant Biotechnol J, 2009, 7(9):964-976.DOI:10.1111/j.1467-7652.2009.00457.x.
[28]
BLIGH E G, DYER W J. A rapid method of total lipid extraction and purification[J]. Can J Biochem Physiol, 1959, 37(8):911-917.DOI:10.1139/o59-099.
[29]
FOLCH J, LEES M, STANLEY G H S. A simple method for the isolation and purification of total lipides from animal tissues[J]. J Biol Chem, 1957, 226(1):497-509.DOI:10.1016/S0021-9258(18)64849-5.
[30]
SCHNEIDER G, LINDQVIST Y, SHANKLIN J, et al. Preliminary crystallographic data for stearoyl-acyl carrier protein desaturase from castor seed[J]. J Mol Biol, 1992, 225(2):561-564.DOI:10.1016/0022-2836(92)90941-C.
[31]
LINDQVIST Y, HUANG W, SCHNEIDER G, et al. Crystal structure of delta9 stearoyl-acyl carrier protein desaturase from castor seed and its relationship to other di-iron proteins[J]. EMBO J, 1996, 15(16):4081-4092.
[32]
SONG N, HU Z R, LI Y H, et al. Overexpression of a wheat stearoyl-ACP desaturase (SACPD) gene TaSSI2 in Arabidopsis ssi2 mutant compromise its resistance to powdery mildew[J]. Gene, 2013, 524(2):220-227.DOI:10.1016/j.gene.2013.04.019.
[33]
P R, WHETTEN R, CARDINAL A, et al. Effect of Δ9-stearoyl-ACP-desaturase-C mutants in a high oleic background on soybean seed oil composition[J]. Theor Appl Genet, 2014, 127(2):349-358.DOI:10.1007/s00122-013-2223-5.
[34]
KACHROO A, SHANKLIN J, WHITTLE E, et al. The Arabidopsis stearoyl-acyl carrier protein-desaturase family and the contribution of leaf isoforms to oleic acid synthesis[J]. Plant Mol Biol, 2007, 63(2):257-271.DOI:10.1007/s11103-006-9086-y.
[35]
ZHANG Y F, MAXIMOVA S N, GUILTINAN M J. Characterization of a stearoyl-acyl carrier protein desaturase gene family from chocolate tree,Theobroma cacao L[J]. Front Plant Sci, 2015, 6:239.DOI:10.3389/fpls.2015.00239.
[36]
邓咪咪, 刘宝玲, 王志龙, 等. 大豆硬脂酰-ACP Δ9脱氢酶(GmSAD)基因家族的鉴定及功能分析[J]. 生物工程学报, 2020, 36(4):716-731.
DENG M M, LIU B L, WANG Z L, et al. Identification and functional analysis of soybean stearoyl-ACP Δ9 desaturase(GmSAD) gene family[J]. Chin J Biotechnol, 2020, 36(4):716-731.DOI:10.13345/j.cjb.190550.
[37]
SHANG X G, CHENG C Z, DING J, et al. Identification of candidate genes from the SAD gene family in cotton for determination of cottonseed oil composition[J]. Mol Genet Genomics, 2017, 292(1):173-186.DOI:10.1007/s00438-016-1265-1.
[38]
LANGE M, YELLINA A L, ORASHAKOVA S, et al. Virus-induced gene silencing (VIGS) in plants:an overview of target species and the virus-derived vector systems[J]. Methods Mol Biol (Clifton N J), 2013, 975:1-14.DOI:10.1007/978-1-62703-278-0_1.
[39]
ZHOU L N, ZHU C, FANG X J, et al. Gene duplication drove the loss of awn in sorghum[J]. Mol Plant, 2021, 14(11):1831-1845.DOI:10.1016/j.molp.2021.07.005.
[40]
ISHIKAWA A, KABEYA N, IKEYA K, et al. A key metabolic gene for recurrent freshwater colonization and radiation in fishes[J]. Science, 2019, 364(6443):886-889.DOI:10.1126/science.aau5656.
PDF(39815 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/