Softwood cutting technology for Acer truncatum and physiological and biochemical analysis during rooting process

WANG Yuxiao, ZHANG Bin, MA Qiuyue, FU Wei, KANG Zhen, ZHU Changhong, LI Shuxian

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (5) : 123-130.

PDF(1786 KB)
PDF(1786 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (5) : 123-130. DOI: 10.12302/j.issn.1000-2006.202208015

Softwood cutting technology for Acer truncatum and physiological and biochemical analysis during rooting process

Author information +
History +

Abstract

【Objective】 In order to investigate the effects of different treatments on the rooting of softwood cuttings of Acer truncatum and find the best treatment method. We analyzed the relationship between changes in nutrient content, oxidase activity, and rooting of cuttings, and preliminarily explored the rooting mechanism of A. truncatum. 【Method】 Using rejuvenated A. truncatum trees and three-year-old A. truncatum mother trees as study materials, we conducted an analysis of the effects of growth regulators [indole-3-butyric acid (IBA) and 1-naphthaleneacetic acid (NAA) and a rooting solution], cutting positions (upper and lower parts), rejuvenation, and cutting time (June and September) on the rooting of A. truncatum. Furthermore, we examined the rate of root growth, callus formation, number of roots, root length, and other indicators of root development. Additionally, changes in nutrient contents (soluble sugar and soluble protein) and changes in oxidase activity [peroxidase (POD), polyphenol oxidase (PPO), and indole-3-acetic acid oxidase (IAAO)] were measured during the rooting process. 【Result】 The optimum IBA and NAA concentrations were 500 and 800 mg/L respectively, and the rooting rates were 59.3% and 52.7%, respectively. The optimal concentration for the rooting solution was a 1.43% volume fraction (70-fold) dilution, which achieved a rooting rate of 43.9%. Significant differences were observed among the three treatments, with all rooting indexes of cuttings treated with growth regulators performed better than those of the control. Additionally, the rooting effect of cuttings in June was better than that in September; the rooting effect of rejuvenated mother trees was better than that of 3-year-old trees; and the rooting effect of upper cuttings was better than that of lower cuttings. There were substantial differences observed following these treatments. During the rooting of the cuttings, the changes in the soluble sugar content following the treatment displayed a decreasing trend followed by an increasing trend. The soluble protein content, POD activity, and PPO activity initially increased and then decreased. However, the IAAO activity displayed a trend of decrease-increase-decrease. The control group exhibited a similar changing trend to that of the treatment group, but the peak time for the treatment group was 5-10 days earlier than that of the control. 【Conclusion】 The adventitious root formation of A. truncatum was categorized as a mixed rooting type. When the upper cuttings of rejuvenated mother trees were treated with IBA 500 mg/L, all rooting indexes were optimized, and the rooting rate peaked at 81.3%. Growth regulator treatment can improve the metabolism rate of nutrients and the synthesis process of related oxidase, and has a facilitative effect on the rooting of cuttings.

Key words

Acer truncatum / growth regulator / softwood cutting / nutrient / oxidase

Cite this article

Download Citations
WANG Yuxiao , ZHANG Bin , MA Qiuyue , et al . Softwood cutting technology for Acer truncatum and physiological and biochemical analysis during rooting process[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(5): 123-130 https://doi.org/10.12302/j.issn.1000-2006.202208015

References

[1]
傅立国. 中国高等植物-第七卷[M]. 青岛: 青岛出版社, 2001.
FU L G. Higher plants of China:Vol. 7[M]. Qingdao: Qingdao Publishing House, 2001.
[2]
李悦, 蔡亚南, 任安琦, 等. 盐碱胁迫对元宝枫幼苗生长和生理特性的影响[J]. 东北林业大学学报, 2022, 50(8): 5-14,21.
LI Y, CAI Y N, REN A Q, et al. Effects of saline-alkali stress on growth and physiological characteristics of Acer truncatum seedlings[J]. J Northeast For Univ, 2022, 50(8):5-14,21. DOI:10.13759/j.cnki.dlxb.2022.08.002.
[3]
王琨, 刘少波, 张娜, 等. 元宝枫研究进展[J]. 西北林学院学报, 2021, 36(3): 152-157,280.
WANG K, LIU S B, ZHANG N, et al. Research progress on Acer truncatum[J]. J Northwest For Univ, 2021, 36(3): 152-157,280. DOI: 10.3969/j.issn.1001-7461.2021.03.23
[4]
王性炎, 王妹清. 新资源食品:元宝枫籽油[J]. 中国油脂, 2011, 36(9):56-59.
WANG X Y, WANG M Q. New resource food: Acer truncatum seed oil[J]. China Oils Fats, 2011, 36(9): 56-59.
[5]
马秋月, 王亚楠, 李淑顺, 等. 元宝枫种子发育过程中油脂积累与可溶性糖、蛋白质之间的关系[J]. 江苏农业学报, 2021, 37(4): 982-989.
MA Q Y, WANG Y N, LI S S, et al. The lipid accumulation and its relationship with soluble sugar and protein in Acer truncatum Bunge seeds development[J]. Jiangsu J Agric Sci, 2021, 37(4):982-989. DOI: 10.3969/j.issn.1000-4440.2021.04.022
[6]
MA Q Y, SUN T L, LI S S, et al. The Acer truncatum genome provides insights into nervonic acid biosynthesis[J]. Plant J, 2020, 104(3): 662-678. DOI: 10.1111/tpj.14954.
[7]
谷荣辉. 中国乡土树种元宝枫的化学成分及代谢组学研究[D]. 北京: 中央民族大学, 2019.
GU R H. Chemical constituents and metabolomics of Acer truncatum, an arbor species native in China[D]. Beijing: Minzu University of China, 2019.
[8]
张洪波. 元宝枫优树繁育技术研究[D]. 北京: 北京林业大学, 2016.
ZHANG H B. Study on regeneration technique of Acer truncatum elite trees[D]. Beijing: Beijing Forestry University, 2016.
[9]
赵瑞, 沈永宝. 林木扦插繁殖研究进展[J]. 种子, 2019, 38(9): 57-66.
ZHAO R, SHENG Y B. Research advances in tree cutting propagation[J]. Seed, 2019, 38(9): 57-66. DOI: 10.16590/j.cnki.1001-4705.2019.09.057.
[10]
李岱龙, 王文文, 王娟, 等. 一种元宝枫扦插育苗方法. CN105830708A[P]. 2016.
LI D L, WANG W W, WANG J, et al. A cutting seedling method of Acer truncatum. CN105830708A[P]. 2016.
[11]
施雷, 张超. 一种元宝枫树扦插方法. CN105993802A[P]. 2016.
SHI L, ZHANG C. A cutting method of Acer truncatum. CN105993802A[P]. 2016.
[12]
李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.
LI H S. Principles and techniques of plant physiological and biochemical experiment[M]. Beijing: Higher Education Press, 2000.
[13]
高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006.
GAO J F. Experimental guidance for plant physiology[M]. Beijing: Higher Education Press, 2006.
[14]
贾娟, 姚延寿, 史敏华, 等. 生根剂促进槭树植物扦插繁殖的研究进展[J]. 西北林学院学报, 2010, 25(4): 107-109,134.
JIA J, YAO Y S, SHI M H, et al. Advances in the researchers of rooting agent in cutting propagation of Aceraceae plants[J]. J Northwest For Univ, 2010, 25(4): 107-109,134.
[15]
郑巧巧, 兰思仁, 刘雪蝶, 等. 生长调节剂对‘香妃’含笑扦插生根及相关酶活性的影响[J]. 中南林业科技大学学报, 2020, 40(5): 67-76.
ZHENG Q Q, LAN S R, LIU X D, et al. Effects of growth regulators on rooting and correlative enzyme activities of Michelia figo ‘Xiangfei’ cuttings[J]. J Central South Univ For Technol, 2020, 40(5): 67-76. DOI: 10.14067/j.cnki.1673-923x.2020.05.009.
[16]
王艺, 贾忠奎, 马履一, 等. 4种植物生长调节剂对红花玉兰嫩枝扦插生根的影响[J]. 林业科学, 2019, 55(7): 35-45.
WANG Y, JIA Z K, MA L Y, et al. Effects of four plant growth regulators on rooting of the softwood cutting of Magnolia wufengensis[J]. Sci Silvae Sin, 2019, 55(7): 35-45. DOI:10.11707/j.1001-7488.20190704.
[17]
魏茂胜. 不同处理对茶绒杜鹃扦插生根与生长的影响[J]. 森林与环境学报, 2019, 39(1): 27-31.
WEI M S. Effects of different treatments on the rooting and growth of Rhododendron apricum[J]. J For Environ, 2019, 39(1): 27-31. DOI:10.13324/j.cnki.jfcf.2019.01.005.
[18]
魏黔春, 江泽平, 刘建锋, 等. 侧柏古树扦插试验及插穗营养物质变化[J]. 南京林业大学学报(自然科学版), 2020, 44(1): 63-71.
WEI Q C, JIANG Z P, LIU J F, et al. Effects of several factors on rooting of cutting propagation of ancient Platycladus orientalias and the changes of nutritive material[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(1): 63-71. DOI:10.3969/j.issn.1000-2006.201903057.
[19]
卜晓婷, 乔孝禄, 徐晓华, 等. 母树年龄、采穗时期和抑制物质对纳塔栎生根的影响[J]. 东北林业大学学报, 2022, 50(2): 11-16,28.
BU X T, QIAO X L, XU X H, et al. Effects of parent stock age, cutting time and rooting inhibitors on stem cutting of Quercus nuttallii[J]. J Northeast For Univ, 2022, 50(2): 11-16,28. DOI: 10.13759/j.cnki.dlxb.2022.02.013.
[20]
郑先波, 王昊, 谭彬, 等. 埋干幼化处理对榛扦插生根的影响[J]. 经济林研究, 2016, 34(2): 147-151.
ZHENG X B, WANG H, TAN B, et al. Effects of rejuvenating treatments through burying trunk on cutting rooting in Corylus[J]. Nonwood For Res, 2016, 34(2): 147-151. DOI: 10.14067/j.cnki.1003-8981.2016.02.027.
[21]
袁利利. 华北五角枫扦插繁殖技术及生根机理的研究[D]. 泰安: 山东农业大学, 2012.
YUAN L L. The studies on the propagation techniques and rooting mechanism of stem cuttings of Acer truncatum Bunge[D]. Tai’an: Shandong Agricultural University, 2012.
[22]
薛满满, 常雪薇, 李春明, 等. 美国白蜡嫩枝扦插生根特性[J]. 中南林业科技大学学报, 2022, 42(4): 40-48.
XUE M M, CHANG X W, LI C M, et al. The rooting characteristics of Fraxinus americana softwood cuttings[J]. J Central South Univ For Technol, 2022, 42(4): 40-48. DOI: 10.14067/j.cnki.1673-923x.2022.04.005.
[23]
NEGISHI N, OISHI M, KAWAOKA A. Chemical screening for promotion of adventitious root formation in Eucalyptus globulus[J]. BMC Proc, 2011, 5(S7): 139. DOI: 10.1186/1753-6561-5-S7-P139.
[24]
侯江涛, 沈聪聪, 张毅芳, 等. 植物扦插繁殖生根机理研究综述[J]. 安徽农业科学, 2019, 47(19): 1-3,6.
HOU J T, SHEN C C, ZHANG Y F, et al. Review on rooting mechanism of plant cuttings propagation[J]. J Anhui Agric Sci, 2019, 47(19): 1-3,6. DOI: 10.3969/j.issn.0517-6611.2019.19.001.
[25]
吕庚鑫, 孟益德, 庆军, 等. ‘华仲6号’杜仲嫩枝扦插生根的解剖及生理变化[J]. 林业科学, 2022, 58(2): 113-124.
LV G X, MENG Y D, QING J, et al. Changes of anatomical structure and physiology during softwood cutting rooting of Eucommia ulmoides ‘Huazhong No. 6’[J]. Sci Silvae Sin, 2022, 58(2): 113-124. DOI: 10.11707/j.1001-7488.20220212.
[26]
RAPAKA V K, BESSLER B, SCHREINER M, et al. Interplay between initial carbohydrate availability, current photosynthesis and adventitious root formation in Pelargonium cuttings[J]. Plant Sci, 2005, 168(6): 1547-1560. DOI: 10.1016/j.plantsci.2005.02.006.
[27]
ZHANG J, SHI Y, ZHANG X Z, et al. Melatonin suppression of heat-induced leaf senescence involves changes in abscisic acid and cytokinin biosynthesis and signaling pathways in perennial ryegrass (Lolium perenne L.)[J]. Environ Exp Bot, 2017, 138: 36-45.DOI: 10.1016/j.envexpbot.2017.02.012.
[28]
梁玉堂, 龙庄如. 树木营养繁殖原理和技术[M]. 北京: 中国林业出版社, 1993.
LIANG Y T, LONG Z R. Principles and techniques of vegetative propagation of trees[M]. Beijing: China Forestry Publishing House, 1993.
[29]
乔孝禄, 卜晓婷, 徐晓华, 等. 纳塔栎嫩枝扦插生根过程中的生理变化[J]. 中南林业科技大学学报, 2021, 41(4): 86-92.
QIAO X L, BU X T, XU X H, et al. Rooting characteristics of Quercus nuttallii softwood cuttings and its physiological changes[J]. J Central South Univ For Technol, 2021, 41(4): 86-92. DOI: 10.14067/j.cnki.1673-923x.2021.04.010.
[30]
刘欢, 刘济明, 骆畅, 等. GGR-6对米槁插穗生根过程中生理动态的影响[J]. 东北林业大学学报, 2021, 49(10): 42-46,64.
LIU H, LIU J M, LUO C, et al. Effect of GGR-6 on physiological dynamics of Cinnamomum migao H. W. Li cuttings during rooting[J]. J Northeast For Univ, 2021, 49(10): 42-46,64. DOI: 10.13759/j.cnki.dlxb.2021.10.008.
[31]
SOMKUWAR R G, BONDAGE D D, SURANGE M S, et al. Rooting behaviour, polyphenol oxidase activity, and biochemical changes in grape rootstocks at different growth stages[J]. Turkish J Agric For, 2011, 35(3): 281-287. DOI: 10.3906/tar-0911-62.
[32]
PEDREIRA J, TERESA HERRERA M, ZARRA I, et al. The overexpression of AtPrx37, an apoplastic peroxidase, reduces growth in Arabidopsis[J]. Physiol Plant, 2011, 141(2): 177-187. DOI: 10.1111/j.1399-3054.2010.01427.x.
[33]
凡莉莉, 薛磊, 赖金莉, 等. 大头典竹扦插过程中营养物质和氧化酶活性变化研究[J]. 竹子学报, 2018, 37(1): 54-59.
FAN L L, XUE L, LAI J L, et al. Change of nutrient content and oxidase activities during cutting propagation of Dendrocalamopsis beecheyana[J]. J Bamboo Res, 2018, 37(1):54-59. DOI: 10.19560/j.cnki.issn1000-6567.2018.01.009.
[34]
吴红, 陆辉, 高克利, 等. 生长调节剂对青钱柳扦插生根及生根过程中保护酶系统的影响[J]. 北方园艺, 2019(20): 106-111.
WU H, LU H, GAO K L, et al. Effects of growth regulators on rooting characteristics and protective enzyme system of Cyclocarya paliurus cuttings[J]. North Hortic, 2019(20): 106-111. DOI: 10.11937/bfyy.20191100.
PDF(1786 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/