The effects of intercropping of Carya illinoinensis and Camellia sinensis ‘Anjibaicha’ on photosynthetic characteristics of C. sinensis tree during rapid growth period

TIAN Mengyang, ZHU Shulin, DOU Quanqin, JI Yanhong

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (2) : 86-96.

PDF(3031 KB)
PDF(3031 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (2) : 86-96. DOI: 10.12302/j.issn.1000-2006.202208022

The effects of intercropping of Carya illinoinensis and Camellia sinensis ‘Anjibaicha’ on photosynthetic characteristics of C. sinensis tree during rapid growth period

Author information +
History +

Abstract

【Objective】 This article explores the differences in photosynthetic and fluorescence characteristics of Camellia sinensis ‘Anjibaicha’ at different measuring points of Carya illinoinensis-Camellia sinensis intercropping to provide a theoretical basis for high-efficiency compound cultivation of Carya illinoinensis-Camellia sinensis ‘Anjibaicha’.【Method】 In this compound model, the daily change in photosynthetic rate, light-response curves, fluorescence parameters and chlorophyll content of 10-year-old Camellia sinensis ‘Anjibaicha’ trees were measured in the fast-growing period (July-September) at four measuring points, i.e., under-crown (T1), crown-margin (T2), outside-crown (T3), and single Camellia sinensis comparison (T0).【Result】 The net photosynthetic rate(Pn) of Camellia sinensis ‘Anjibaicha’ could be significantly altered in T2. The Pn values at T1, T2 and T3 were significantly higher than those at T0 in July under high temperatures. The leaves had a midday depression of photosynthesis at T0 in August, and the Pn at T2 was significantly higher than that at T0. The Pn at different measuring points (T1, T2 and T3) were significantly higher than those of T0 in September. Compared with the control (T0), the higher apparent quantum efficiency (ηAQY), maximum net photosynthetic rate ( P n , m a x), and light saturation point (PLSP) were high, and the light compensation point (PLCP) was low at T2. The dark respiration rate (Rd) gradually decreased with decreasing light intensity. From July to September, the chlorophyll content of Camellia sinensis leaves was significantly higher in intercropping than in single Camellia sinensis cropping. With the decrease in light intensity, chlorophyll a (Chla), chlorophyll b (Chlb), and total chlorophyll (Chl) gradually increased, and the chlorophyll a/b value showed a decreasing trend. Camellia sinensis leaves produce more chlorophyll, which helps Camellia sinensis trees capture more light energy for photosynthesis. The maximum photochemical efficiency (FV/Fm) and potential photochemical activity (FV/F0) of PSⅡ of Camellia sinensis trees in intercropping were significantly higher than those of single Camellia sinensis cropping in July and August. The light energy conversion efficiency and electron transfer ability of Camellia sinensis ‘Anjibaicha’ leaves in single cropping decreased because high temperature and high-intensity light could produce obvious photoinhibition. In September, the FV/Fm and FV/F0 of Camellia sinensis trees at T2 during intercropping were significantly higher than those of T1 and T0. The results showed that excessive shading inhibited the photochemical activity of PSⅡ, which blocked energy transfer and transformation in photosynthesis. 【Conclusion】 In the Carya illinoinensis-Camellia sinensis ‘Anjibaicha’ forest compound model, many photosynthetic physiological indexes of Camellia sinensis ‘Anjibaicha’ were improved, among which the crown-margin (T2) environment was favorable for the photosynthesis of Camellia sinensis ‘Anjibaicha’ leaves, followed by the outside-crown (T3), and the under-crown (T1) and monoculture (T0) were poor. High temperature and high-intensity light have obvious photoinhibition in single-cropped Camellia sinensis ‘Anjibaicha’, which reduced photosynthetic efficiency.

Key words

Carya illinoinensis / Camellia sinensis ‘Anjibaicha’ / intercropping / photosynthetic characteristic parameters / chlorophyll fluorescence

Cite this article

Download Citations
TIAN Mengyang , ZHU Shulin , DOU Quanqin , et al. The effects of intercropping of Carya illinoinensis and Camellia sinensis ‘Anjibaicha’ on photosynthetic characteristics of C. sinensis tree during rapid growth period[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(2): 86-96 https://doi.org/10.12302/j.issn.1000-2006.202208022

References

[1]
尧渝, 张厅, 马伟伟, 等. 不同间作模式对茶树光合生理及茶叶品质的影响[J]. 山西农业科学, 2016, 44(4):470-473.
YAO Y, ZHANG T, MA W W, et al. Effects of different intercropping patterns on photosynthetic physiology characteristics of tea plants and tea quality[J]. J Shanxi Agric Sci, 2016, 44(4):470-473.DOI: 10.3969/j.issn.1002-2481.2016.04.12.
[2]
巩雪峰, 余有本, 肖斌, 等. 不同栽培模式对茶园生态环境及茶叶品质的影响[J]. 西北植物学报, 2008, 28(12):2485-2491.
GONG X F, YU Y B, XIAO B, et al. Effects of different cultivating modes of tea gardens on environment and tea quality[J]. Acta Bot Boreali Occidentalia Sin, 2008, 28(12):2485-2491.
[3]
阮旭, 张玥, 杨忠星, 等. 果茶间作模式下茶树光合特征参数的日变化[J]. 南京农业大学学报, 2011, 34(5):53-57.
RUAN X, ZHANG Y, YANG Z X, et al. Diurnal variation of photosynthetic characteristic parameters of tea plant under fruit-tea intercropping patterns[J]. J Nanjing Agric Univ, 2011, 34(5):53-57.
[4]
周志翔. 林茶间作下的光照条件与茶树生理生态研究综述[J]. 生态学杂志, 1995, 14(3):56-63.
ZHOU Z X. Review on light variation in tea and other woody plants intercropped plantations and eco-physiology of tea plants[J]. Chin J Ecol, 1995, 14(3):56-63.
[5]
谢文钢, 邵济波, 韩楠, 等. 安吉白茶的研究进展及发展前景[J]. 蚕桑茶叶通讯, 2011(5):22-25.
XIE W G, SHAO J B, HAN N, et al. Research progress and development prospect of Anji white tea[J]. Newsl Seric Tea, 2011(5):22-25.DOI: 10.3969/j.issn.1007-1253.2011.05.014.
[6]
邓静, 王远兴, 丁建. 白茶与安吉白茶的研究进展[J]. 食品工业科技, 2013, 34(4):368-371,377.
DENG J, WANG Y X, DING J. Research progress in white tea and Anji white tea[J]. Sci Technol Food Ind, 2013, 34(4):368-371,377.DOI: 10.13386/j.issn1002-0306.2013.04.080.
[7]
方敏瑜, 傅懋毅, 李纪元, 等. 林-茶间种模式对安吉白茶生长的防护功能分析[J]. 林业科学研究, 1999, 12(4):433-437.
FANG M Y, FU M Y, LI J Y, et al. Shelter function analysis on Anjibaicha growth in the model of tea plant intercropping with trees[J]. For Res, 1999, 12(4):433-437.
[8]
唐荣南, 汤兴陆. 湿地松与茶树间作生态效应的研究[J]. 南京林业大学学报(自然科学版), 1987, 11(2):35-44.
TANG R N, TANG X L. Studies of ecological benefits of interplanting slash pines in tea plantation[J]. J Nanjing For Univ, 1987, 11(2):35-44.
[9]
叶子飘. 光合作用对光和CO2响应模型的研究进展[J]. 植物生态学报, 2010, 34(6):727-740.
YE Z P. A review on modeling of responses of photosynthesis to light and CO2[J]. Chin J Plant Ecol, 2010, 34(6):727-740.DOI: 10.3773/j.issn.1005-264x.2010.06.012.
[10]
潘平平, 窦全琴, 谢寅峰, 等. 薄壳山核桃15个家系子代苗期生长和荧光特性比较[J]. 江西农业大学学报, 2019, 41(3):454-463.
PAN P P, DOU Q Q, XIE Y F, et al. Comparison of growth and fluorescence characteristics of the progeny seedlings of 15 families of Carya illinoensis[J]. Acta Agric Univ Jiangxiensis, 2019, 41(3):454-463.DOI: 10.13836/j.jjau.2019054.
[11]
汤文华, 窦全琴, 潘平平, 等. 不同薄壳山核桃品种光合特性研究[J]. 南京林业大学学报(自然科学版), 2020, 44(3):81-88.
TANG W H, DOU Q Q, PAN P P, et al. Photosynthetic characteristics of grafted plants of different Carya illinoinensis varieties[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(3):81-88.DOI: 10.3969/j.issn.1000-2006.201903004.
[12]
孙君, 朱留刚, 林志坤, 等. 茶树光合作用研究进展[J]. 福建农业学报, 2015, 30(12):1231-1237.
SUN J, ZHU L G, LIN Z K, et al. Research progress on photosynthesis of tea plants[J]. Fujian J Agric Sci, 2015, 30(12):1231-1237.DOI: 10.19303/j.issn.1008-0384.2015.12.018.
[13]
陆文渊, 钱文春, 赖建红, 等. 安吉白茶品质的气候成因初探[J]. 茶叶科学技术, 2012, 53(3):37-39.
LU W Y, QIAN W C, LAI J H, et al. Preliminary study on the climatic causes of Anji white tea quality[J]. Tea Sci Technol, 2012, 53(3):37-39.
[14]
季琳琳, 佘诚棋, 肖正东, 等. 油茶-茶复合模式对茶树光合特性的影响[J]. 经济林研究, 2013, 31(1):39-43.
JI L L, SHE C Q, XIAO Z D, et al. Effects of oiltea-tea compound mode on photosynthetic characteristics in tea bush[J]. Nonwood For Res, 2013, 31(1):39-43.DOI: 10.14067/j.cnki.1003-8981.2013.01.008.
[15]
江新凤, 李琛, 蔡翔, 等. 遮阴对 “黄金菊” 茶树生长与茶叶品质的影响[J]. 茶叶通讯, 2019, 46(4):424-428.
JIANG X F, LI C, CAI X, et al. Effects of shading treatment on growing and quality of ‘Huangjinju’ (Camellia sinensis)[J]. Tea Commun, 2019, 46(4):424-428.
[16]
李杰, 贾豪语, 颉建明, 等. 生物肥部分替代化肥对花椰菜产量、品质、光合特性及肥料利用率的影响[J]. 草业学报, 2015, 24(1):47-55.
LI J, JIA H Y, XIE J M, et al. Effects of partial substitution of mineral fertilizer by bio-fertilizer on yield,quality,photosynthesis and fertilizer utilization rate in broccoli[J]. Acta Prataculturae Sin, 2015, 24(1):47-55.DOI: 10.11686/cyxb20150107.
[17]
叶子飘, 谢志亮, 段世华, 等. 设施栽培条件下三叶青叶片光合的气孔和非气孔限制[J]. 植物生理学报, 2020, 56(1):41-48.
YE Z P, XIE Z L, DUAN S H, et al. Stomatal and non-stomatal limitation of photosynthesis for Tetrastigma hemsleyanum under the condition of facility cultivation[J]. Plant Physiol J, 2020, 56(1):41-48.DOI: 10.13592/j.cnki.ppj.2019.0303.
[18]
FARQUHAR G D, SHARKEY T D. Stomatal conductance and photosynthesis[J]. Annu Rev Plant Physiol, 1982, 33:317-345.DOI: 10.1146/annurev.pp.33.060182.001533.
[19]
赵康, 肖正东, 佘诚棋, 等. 栽培模式对茶树叶片光合生理及茶叶品质的影响[J]. 安徽农业大学学报, 2012, 39(6):934-939.
ZHAO K, XIAO Z D, SHE C Q, et al. Effects of plantation patterns on photosynthetic characteristics and quality of tea[J]. J Anhui Agric Univ, 2012, 39(6):934-939.DOI: 10.13610/j.cnki.1672-352x.2012.06.023.
[20]
张勇, 程怡, 王清明, 等. 遮荫对月季光合特性及生长发育的影响[J]. 西北植物学报, 2014, 34(1):162-168.
ZHANG Y, CHENG Y, WANG Q M, et al. Effects of shading on growth and photosynthetic characteristics of Rosa hybrida[J]. Acta Bot Boreali Occidentalia Sin, 2014, 34(1):162-168.DOI: 10.7606/j.issn.1000-4025.2014.01.0162.
[21]
CHAI S F, TANG J M, MALLIK A, et al. Eco-physiological basis of shade adaptation of Camellia nitidissima,a rare and endangered forest understory plant of southeast Asia[J]. BMC Ecol, 2018, 18(1):5.DOI: 10.1186/s12898-018-0159-y.
[22]
BOARDMAN N K. Comparative photosynthesis of sun and shade plants[J]. Annu Rev Plant Physiol, 1977, 28:355-377.DOI: 10.1146/annurev.pp.28.060177.002035.355-371.
[23]
闫小莉, 王德炉. 遮荫对苦丁茶树叶片特征及光合特性的影响[J]. 生态学报, 2014, 34(13):3538-3547.
YAN X L, WANG D L. Effects of shading on the leaves and photosynthetic characteristics of Ligustrum robustum[J]. Acta Ecol Sin, 2014, 34(13):3538-3547.DOI: 10.5846/stxb201306241761.
[24]
王晨光, 郝兴宇, 李红英, 等. CO2浓度升高对大豆光合作用和叶绿素荧光的影响[J]. 核农学报, 2015, 29(8):1583-1588.
WANG C G, HAO X Y, LI H Y, et al. Effects of elevated atmospheric CO2 concentration on soybean photosynthesis and chlorophyll fluorescence parameters[J]. J Nucl Agric Sci, 2015, 29(8):1583-1588.DOI: 10.11869/j.issn.100-8551.2015.08.1583.
[25]
原向阳, 郭平毅, 黄洁, 等. 缺磷胁迫下草甘膦对抗草甘膦大豆幼苗光合作用和叶绿素荧光参数的影响[J]. 植物营养与肥料学报, 2014, 20(1):221-228.
YUAN X Y, GUO P Y, HUANG J, et al. Effect of glyphosate on photosynthesis and chlorophyll fluorescence of leaves of glyphosate-resistant soybean[Glycine max(L.) Merr.]seedlings under phosphorus deficiency stress[J]. J Plant Nutr Fertil, 2014, 20(1):221-228.
[26]
许大全. 光合作用学[M]. 北京: 科学出版社: 2013,94-95, 231-232.
XU D Q. The science of photosynthesis[M]. Beijing: Science Press: 2013,94-95, 231-232.
[27]
潘伟彬. 生态茶园复合栽培的农学与生态学研究[J]. 江西农业学报, 2009, 21(2):65-67,70.
PAN W B. Studies on agronomy and ecology of composite cultivation of ecological tea garden[J]. Acta Agric Jiangxi, 2009, 21(2):65-67,70.DOI: 10.19386/j.cnki.jxnyxb.2009.02.022.
[28]
杨巨仙, 窦全琴. 薄壳山核桃等3树种叶片水浸液对茶树种子萌发和幼苗生长的影响[J]. 江苏林业科技, 2022, 49(3):1-8.
YANG J X, DOU Q Q. Allelopathic effects of leaf aqueous extracts from three plant species on tea (Camellia sinensis)[J]. J Jiangsu For Sci Technol, 2022, 49(3):1-8.DOI: 10.3969/j.issn.1001?7380.2022.03.001.
PDF(3031 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/