Affecting factors analysis of functional diversity at different forest strata in an old growth forest community in Yachang Natural Reserve

WANG Yaoyi, WANG Hongxiang, WANG Yongqiang, ZENG Wenhao, YE Shaoming

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (5) : 28-38.

PDF(2573 KB)
PDF(2573 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (5) : 28-38. DOI: 10.12302/j.issn.1000-2006.202208030

Affecting factors analysis of functional diversity at different forest strata in an old growth forest community in Yachang Natural Reserve

Author information +
History +

Abstract

【Objective】 Functional diversity is crucial for forest biodiversity protection and maintenance of ecosystem stability. Exploring the characteristics and causes of functional diversity variation at different stratum levels will assist in understanding the maintenance mechanisms of biodiversity and plant community assembly processes. 【Method】 Leaf traits and environmental factors were collected from forest plot data from an 1.6 hm2 evergreen broadleaved forest in Guangxi Yachang Orchidaceae National Natural Reserve. K-means partitioning and Gaussian kernel density estimation were used for stratification. The direct and indirect effects of species diversity and environmental factors (light, topography, and soil) on functional diversity were explored in different forest strata using structural equation models. 【Result】 The diversity indices of the understory were greater than those of the canopy (P<0.05). Species diversity had a significant direct impact on all four functional diversity indices in the understory layer, whereas only the functional richness index (FRic) and quadratic entropy (RAOQ) indices were affected directly by species diversity in the canopy layer (P<0.05). A significant indirect effect (β = 0.278, P<0.01) of canopy openness on FRic index and a direct effect (β = -0.593, P<0.01) of canopy openness on functional evenness index (FEve) were found for understory trees. Topographic factors affected canopy functional diversity. Specifically, there was a relatively significant direct effect of aspect on FEve (β = -0.420, P<0.01) and RAOQ (β = -0.300, P<0.05) indices for canopy trees. Soil factors mainly affected the functional diversity of different forest layers through species diversity. Soil total phosphorus, available phosphorus, alkaline hydrolysis nitrogen, and available potassium content had a greater effect on the functional diversity of the understory, whereas soil total potassium content affected the FRic and RAOQ indices of the canopy. 【Conclusion】 There were marked differences in the characteristics of functional diversity at different forest stratum in the study area. Functional diversity was mainly affected by species diversity, canopy openness, and soil nutrients of understory plants, whereas topographic factors determined the functional diversity of the canopy layer. This study reveals the effects of biological and abiotic environmental factors on functional diversity across different forest layers and expands the understanding of the diversity of vertical stratification. The findings provide a further reference for biodiversity protection in natural forests.

Key words

old-growth forest / canopy / understory / functional diversity / structural equation model (SEM)

Cite this article

Download Citations
WANG Yaoyi , WANG Hongxiang , WANG Yongqiang , et al . Affecting factors analysis of functional diversity at different forest strata in an old growth forest community in Yachang Natural Reserve[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(5): 28-38 https://doi.org/10.12302/j.issn.1000-2006.202208030

References

[1]
马克平. 生物多样性科学的热点问题[J]. 生物多样性, 2016, 24(1):1-2.
MA K P. Hot topics for biodiversity science[J]. Biodivers Sci, 2016, 24(1):1-2.DOI: 10.17520/biods.2016029.
[2]
MORI A S, FURUKAWA T, SASAKI T. Response diversity determines the resilience of ecosystems to environmental change[J]. Biol Rev, 2013, 88(2):349-364.DOI: 10.1111/brv.12004.
[3]
XU W, LUO W X, ZHANG C Y, et al. Biodiversity-ecosystem functioning relationships of overstorey versus understorey trees in an old-growth temperate forest[J]. Ann For Sci, 2019, 76(3):1-13.DOI: 10.1007/s13595-019-0845-8.
[4]
CHAO A, CHIU C H, JOST L. Unifying species diversity,phylogenetic diversity,functional diversity,and related similarity and differentiation measures through hill numbers[J]. Annu Rev Ecol Evol Syst, 2014, 45:297-324.DOI: 10.1146/annurev-ecolsys-120213-091540.
[5]
何芸雨, 郭水良, 王喆. 植物功能性状权衡关系的研究进展[J]. 植物生态学报, 2019, 43(12):1021-1035.
HE Y Y, GUO S L, WANG Z. Research progress of trade-off relationships of plant functional traits[J]. Chin J Plant Ecol, 2019, 43(12):1021-1035.DOI: 10.17521/cjpe.2019.0122.
[6]
MASON N W H, MOUILLOT D, LEE W G, et al. Functional richness,functional evenness and functional divergence:the primary components of functional diversity[J]. Oikos, 2005, 111(1):112-118.DOI: 10.1111/j.0030-1299.2005.13886.x.
[7]
LUO Y H, CADOTTE M W, BURGESS K S, et al. Greater than the sum of the parts:how the species composition in different forest strata influence ecosystem function[J]. Ecol Lett, 2019, 22(9):1449-1461.DOI: 10.1111/ele.13330.
[8]
AGUIRRE-GUTIÉRREZ J, BERENGUER E, MENOR I O, et al. Functional susceptibility of tropical forests to climate change[J]. Nat Ecol Evol, 2022, 6(7):878-889.DOI: 10.1038/s41559-022-01747-6.
[9]
韩涛涛, 唐玄, 任海, 等. 群落/生态系统功能多样性研究方法及展望[J]. 生态学报, 2021, 41(8):3286-3295.
HAN T T, TANG X, REN H, et al. Community/ecosystem functional diversity:measurements and development[J]. Acta Ecol Sin, 2021, 41(8):3286-3295.DOI: 10.5846/stxb201903080442.
[10]
VILLÉGER S, MASON N W H, MOUILLOT D. New multidimensional functional diversity indices for a multifaceted framework in functional ecology[J]. Ecology, 2008, 89(8):2290-2301.DOI: 10.1890/07-1206.1.
[11]
BISWAS S R, MALLIK A U, BRAITHWAITE N T, et al. Effects of disturbance type and microhabitat on species and functional diversity relationship in stream-bank plant communities[J]. For Ecol Manag, 2019, 432:812-822.DOI: 10.1016/j.foreco.2018.10.021.
[12]
SUÁREZ-CASTRO A F, RAYMUNDO M, BIMLER M, et al. Using multi-scale spatially explicit frameworks to understand the relationship between functional diversity and species richness[J]. Ecography, 2022(6): e05844.DOI: 10.1111/ecog.05844.
[13]
许驭丹, 董世魁, 李帅, 等. 植物群落构建的生态过滤机制研究进展[J]. 生态学报, 2019, 39(7):2267-2281.
XU Y D, DONG S K, LI S, et al. Research progress on ecological filtering mechanisms for plant community assembly[J]. Acta Ecol Sin, 2019, 39(7):2267-2281.DOI: 10.5846/stxb201804260946.
[14]
DING Y, ZANG R G, LU X H, et al. The effect of environmental filtering on variation in functional diversity along a tropical elevational gradient[J]. J Veg Sci, 2019, 30(5):973-983.DOI: 10.1111/jvs.12786.
[15]
盘远方, 李娇凤, 姚玉萍, 等. 桂林岩溶石山青冈群落植物功能多样性和环境因子与坡向的关联研究[J]. 生态学报, 2021, 41(11):4484-4492.
PAN Y F, LI J F, YAO Y P, et al. Changes in plant functional diversity and environmental factors of Cyclobalanopsis glauca community in response to slope gradient in Karst hills,Guilin[J]. Acta Ecol Sin, 2021, 41(11):4484-4492.DOI: 10.5846/stxb201906031169.
[16]
李杰, 李远发, 陆道调, 等. 南盘江流域松栎混交林的分层多样性特征[J/OL]. 生态学杂志:1-13[2022-06-21].
LI J, LI Y F, LU D D, et al. The characteristics of stratification diversity of pine-oak mixed forests in the Nanpan River Basin[J/OL]. Chinese Journal of Ecology: 1-13[2022-06-21]. http://kns.cnki.net/kcms/detail/21.1148.Q.20220620.1345.014.html.
[17]
桂旭君, 练琚愉, 张入匀, 等. 鼎湖山南亚热带常绿阔叶林群落垂直结构及其物种多样性特征[J]. 生物多样性, 2019, 27(6):619-629.
GUI X J, LIAN J Y, ZHANG R Y, et al. Vertical structure and its biodiversity in a subtropical evergreen broad-leaved forest at Dinghushan in Guangdong Province,China[J]. Biodivers Sci, 2019, 27(6):619-629.DOI: 10.17520/biods.2019107.
[18]
LI Y, HE J, YU S, et al. Spatial structure of the vertical layers in a subtropical secondary forest 57 years after clear-cutting[J]. iForest, 2019, 12(5):442-450.DOI: 10.3832/ifor2975-012.
[19]
李艳朋, 倪云龙, 许涵, 等. 鼎湖山南亚热带常绿阔叶林植物功能性状变异与不同垂直层次个体生长的关联[J]. 生物多样性, 2021, 29(9):1186-1197.
LI Y P, NI Y L, XU H, et al. Relationship between variation of plant functional traits and individual growth at different vertical layers in a subtropical evergreen broad-leaved forest of Dinghushan[J]. Biodivers Sci, 2021, 29(9):1186-1197.DOI: 10.17520/biods.2021205.
[20]
吴昊, 肖楠楠, 林婷婷. 秦岭松栎林功能多样性与物种多样性和环境异质性的耦合关系[J]. 生态环境学报, 2020, 29(6):1090-1100.
WU H, XIAO N N, LIN T T. Relationships between functional diversity and species diversity of pine-oak mixed forest in Qinling Mountains and their environmental explanations[J]. Ecol Environ Sci, 2020, 29(6):1090-1100.DOI: 10.16258/j.cnki.1674-5906.2020.06.003.
[21]
CHENG X Q, TAIN P, LI Z Z, et al. Effects of environmental factors on plant functional traits across different plant life forms in a temperate forest ecosystem[J]. New For, 2022, 53(1):125-142.DOI: 10.1007/s11056-021-09847-0.
[22]
楼一恺, 范忆, 戴其林, 等. 天目山常绿落叶阔叶林群落垂直结构与群落整体物种多样性的关系[J]. 生态学报, 2021, 41(21):8568-8577.
LOU Y K, FAN Y, DAI Q L, et al. Relationship between vertical structure and overall species diversity in an evergreen deciduous broad-leaved forest community of Tianmu Mountain Natural Reserve[J]. Acta Ecol Sin, 2021, 41(21):8568-8577.DOI: 10.5846/stxb202007301989.
[23]
张田田, 王璇, 任海保, 等. 浙江古田山次生与老龄常绿阔叶林群落特征的比较[J]. 生物多样性, 2019, 27(10):1069-1080.
ZHANG T T, WANG X, REN H B, et al. A comparative study on the community characteristics of secondary and old-growth evergreen broad-leaved forests in Gutianshan,Zhejiang Province[J]. Biodivers Sci, 2019, 27(10):1069-1080.DOI: 10.17520/biods.2019059.
[24]
李述万. 广西雅长兰科植物国家级自然保护区维管束植物物种多样性研究[D]. 桂林: 广西师范大学, 2017.
LI S W. Studies on species diversity of vascular plants in Yachang orchid national nature reserve of Guangxi[D]. Guilin: Guangxi Normal University, 2017.
[25]
PEREZ-HARGUINDEGUY N, DIAZ S, GARNIER E, et al. New handbook for standardised measurement of plant functional traits worldwide[J]. Aust J Bot, 2013, 61(67-234).DOI:http://dx.doi,org/10.1017/BT12225.
[26]
WANG L Q, ALI A. Climate regulates the functional traits-aboveground biomass relationships at a community-level in forests:a global meta-analysis[J]. Sci Total Environ, 2021, 761:143238.DOI: 10.1016/j.scitotenv.2020.143238.
[27]
柯娴氡, 贺立静, 苏志尧. 南方4种木本植物相对叶绿素指标及其分布[J]. 中南林业科技大学学报, 2010, 30(8):82-86.
KE X D, HE L J, SU Z Y. Relative chlorophyll content and its distribution of four woody species in south China[J]. J Central South Univ For & Technol, 2010, 30(8):82-86.DOI: 10.14067/j.cnki.1673-923x.2010.08.025.
[28]
熊映杰, 于果, 魏凯璐, 等. 天童山阔叶木本植物叶片大小与叶脉密度及单位叶脉长度细胞壁干质量的关系[J]. 植物生态学报, 2022, 46(2):136-147.
XIONG Y J, YU G, WEI K L, et al. Relationships between lamina size,vein density and vein cell wall dry mass per unit vein length of broad-leaved woody species in Tiantong Mountain,southeastern China[J]. Chin J Plant Ecol, 2022, 46(2):136-147.DOI: 10.17521/cjpe.2021.0060.
[29]
鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000:1-336.
LU R K. Methods of soil agrochemical analysis[M]. China Agriculture Scientech Press, 2000:1-336.
[30]
HARMS K E, CONDIT R, HUBBELL S P, et al. Habitat associations of trees and shrubs in a 50-ha neotropical forest plot[J]. J Ecol, 2001, 89(6):947-959.DOI: 10.1111/j.1365-2745.2001.00615.x.
[31]
濮毅涵, 徐丹丹, 王浩斌. 基于数码相片的林冠郁闭度提取方法研究[J]. 林业资源管理, 2020(6):153-160.
PU Y H, XU D D, WANG H B. An approach on estimating canopy closure via digital images[J]. For Resour Manag, 2020(6):153-160.DOI: 10.13466/j.cnki.lyzygl.2020.06.024.
[32]
唐丽丽, 陈国平, 冯小梅, 等. 基于系统发育的燕山东麓植物群落的构建机制[J]. 植物研究, 2017, 37(6):807-815.
TANG L L, CHEN G P, FENG X M, et al. Community assembly rules of the east of Yanshan Mountain based on phylogeny[J]. Bull Bot Res, 2017, 37(6):807-815.DOI: 10.7525/j.issn.1673-5102.2017.06.002.
[33]
马克平, 刘玉明. 生物群落多样性的测度方法 Ⅰ:α多样性的测度方法(下)[J]. 生物多样性, 1994, 2(4):231-239.
MA K P, LIU Y M. The measurement method of biodiversity Ι: α diversity measurement method(Ⅱ)[J]. Chin Biodiversity, 1994, 2(4):231-239.
[34]
BOTTA-DUKÁT Z. Rao’s quadratic entropy as a measure of functional diversity based on multiple traits[J]. J Veg Sci, 2005, 16(5):533-540.DOI: 10.1111/j.1654-1103.2005.tb02393.x.
[35]
石亚飞, 石善恒, 黄晓敏. 基于R的结构方程模型在生态学中的应用[J]. 生态学杂志, 2022, 41(5):1015-1023.
SHI Y F, SHI S H, HUANG X M. The application of structural equation modeling in ecology based on R[J]. Chin J Ecol, 2022, 41(5):1015-1023.DOI: 10.13292/j.1000-4890.202203.016.
[36]
ROSSEEL Y. Lavaan:an R package for structural equation modeling[J]. J Stat Softw, 2012, 48(2):1-36.DOI: 10.18637/jss.v048.i02.
[37]
KASSAMBARA A. Ggcorrplot: visualization of a vorrelation matrix using ‘ggplot2’[EB/OL]. R package version 013.2019. [2022-08-10]. https://CRAN.R-project.org/package=ggcorrplot.
[38]
BREIMAN L, CUTLER A, LIAW A, et al. RandomForest: Breiman and Cutler’s Random Forests for Classification and Regression[EB/OL]. R package version 47-11. 2022. [2022-08-10]. https://CRAN.R-project.org/package=randomForest.
[39]
OKSANEN J, SIMPSON G L, BLANCHET F G, et al. Community Ecology Package[EB/OL]. R package version 26-2. 2022. [2022-08-10]. https://cran.r-project.org/web/packages/vegan/.
[40]
MAMMOLA S, CARMONA C P, GUILLERME T, et al. Concepts and applications in functional diversity[J]. Funct Ecol, 2021, 35(9):1869-1885.DOI: 10.1111/1365-2435.13882.
[41]
R Core Team. R: a language and environment for statistical computing,2021. [EB/OL]. [2022-08-10]. https://www.R-project.org.
[42]
SU X P, ZHENG G C, CHEN H Y H. Understory diversity are driven by resource availability rather than resource heterogeneity in subtropical forests[J]. For Ecol Manag, 2022, 503:119781.DOI: 10.1016/j.foreco.2021.119781.
[43]
BOTTA-DUKÁT Z, CZÚCZ B. Testing the ability of functional diversity indices to detect trait convergence and divergence using individual-based simulation[J]. Methods Ecol Evol, 2016, 7(1):114-126.DOI: 10.1111/2041-210X.12450.
[44]
SANAPHRE-VILLANUEVA L, DUPUY J, ANDRADE J, et al. Functional diversity of small and large trees along secondary succession in a tropical dry forest[J]. Forests, 2016, 7(12):163.DOI: 10.3390/f7080163.
[45]
郑芬, 李兆佳, 邱治军, 等. 广东南岭天然常绿阔叶林林下光环境对林下幼树功能性状的影响[J]. 生态学报, 2020, 40(13):4516-4527.
ZHENG F, LI Z J, QIU Z J, et al. Effects of understory light on functional traits of evergreen broad-leaved forest saplings in Nanling Mountains,Guangdong Province[J]. Acta Ecol Sin, 2020, 40(13):4516-4527.DOI: 10.5846/stxb201911152453.
[46]
谭一波, 申文辉, 付孜, 等. 环境因子对桂西南蚬木林下植被物种多样性变异的解释[J]. 生物多样性, 2019, 27(9):970-983.
TAN Y B, SHEN W H, FU Z, et al. Effect of environmental factors on understory species diversity in southwest Guangxi Excentrodendron tonkinense forests[J]. Biodivers Sci, 2019, 27(9):970-983.DOI: 10.17520/biods.2019133.
[47]
徐耀粘, 刘检明, 万丹, 等. 林冠结构和地形对亚热带常绿落叶阔叶林林下幼苗物种多样性和功能多样性的影响[J]. 植物科学学报, 2020, 38(6):733-742.
XU Y Z, LIU J M, WAN D, et al. Effects of canopy structure and topography on seedling species diversity in an evergreen and deciduous broad-leaved mixed forest[J]. Plant Sci J, 2020, 38(6):733-742.DOI: 10.11913/PSJ.2095-0837.2020.60733.
[48]
LIANG J J, ZHOU M, TOBIN P C, et al. Biodiversity influences plant productivity through niche-efficiency[J]. Proc Natl Acad Sci USA, 2015, 112(18):5738-5743.DOI: 10.1073/pnas.1409853112.
[49]
MOUILLOT D, BELLWOOD D R, BARALOTO C, et al. Rare species support vulnerable functions in high-diversity ecosystems[J]. PLoS Biol, 2013, 11(5):e1001569.DOI: 10.1371/journal.pbio.1001569.
[50]
MAO Q G, CHEN H, GURMESA G A, et al. Negative effects of long-term phosphorus additions on understory plants in a primary tropical forest[J]. Sci Total Environ, 2021, 798:149306.DOI: 10.1016/j.scitotenv.2021.149306.
[51]
BORDIN K M, MÜLLER S C. Drivers of subtropical forest dynamics:the role of functional traits,forest structure and soil variables[J]. J Veg Sci, 2019, 30(6):1164-1174.DOI: 10.1111/jvs.12811.
[52]
徐武美, 宋彩云, 李巧明. 西双版纳热带季节雨林土壤养分空间异质性对乔木树种多样性的影响[J]. 生态学报, 2015, 35(23):7756-7762.
XU W M, SONG C Y, LI Q M. Relationship between soil resource heterogeneity and tree diversity in Xishuangbanna tropical seasonal rainforest,southwest China[J]. Acta Ecol Sin, 2015, 35(23):7756-7762.DOI: 10.5846/stxb201405120968.
PDF(2573 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/