Effects of elevated atmospheric CO2 concentration on the photosynthetic physiology and morphology of Ormosia hosiei seedlings

WEI Yi, WEI Xiaoli, WANG Mingbin, WANG Man, YU Dalong

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (6) : 124-132.

PDF(7962 KB)
PDF(7962 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (6) : 124-132. DOI: 10.12302/j.issn.1000-2006.202208059

Effects of elevated atmospheric CO2 concentration on the photosynthetic physiology and morphology of Ormosia hosiei seedlings

Author information +
History +

Abstract

【Objective】This research aims to reveal a response strategy for the rare and endangered Ormosia hosiei facing of elevated atmospheric CO2 concentration under future climate change, with the hope to forecast its future living conditions and take effective measures to prevent loss. 【Method】Two-year-old O. hosiei seedlings were planted in open-top chambers to simulate the effects of increasing atmospheric CO2 concentration. Three CO2 concentrations, namely 400 (CK), 600 (E1) and 800 μmol/mol (E2) were set. After 146 days of treatment, the effects of elevated CO2 concentration on the photosynthetic physiology, apparent characteristics and leaf anatomical characteristics of the O. hosiei seedlings were analyzed. 【Result】(1) The photosynthetic physiological parameters of the O. hosiei seedlings maintained a high level in the elevated CO2 environment. The chlorophyll and carotenoids in the E2 treatment increased by 8.65% and 23.47%, respectively, compared with CK. The activity of Ribulose-1,5-bisphosphate carboxylase/oxygenase and Ribulose-1,5-bisphosphatecarboxylase/oxygenase activase in the E2 treatment increased by 25.11% and 85.36%, respectively, compared with CK. The net photosynthetic rate in the E2 treatment increased by 235.40% compared with CK. The chlorophyll fluorescence parameters of maximum photochemical efficiency Fv/Fm in the E1 and E2 treatments significantly decreased by 29.46% and 9.12%, respectively, compared with CK, but the Y(Ⅱ) was not significantly different among the treatments. The chlorophyll fluorescence parameters reflected the photochemical quenching coefficient of photosynthetic activity in qP and qL under the E2 treatment. Under CK they significantly increased by 44.30% and 134.84%, respectively, reflecting that the heat dissipation capability of the photochemical quenching coefficients of qN and NPQ was not sensitive to the response to the elevated CO2 concentrations. (2) In terms of leaf morphology and apparent characteristics, the leaf area of the O. hosiei seedlings increased but the leaves became thinner under high CO2 conditions. The specific leaf weight of the O. hosiei seedlings decreased by 31.68% and 24.26% under E2 and E1 compared with CK, respectively. The increased CO2 concentration significantly increased the palisade tissue thickness of the leaves but decreased the sponge tissue thickness. The excellent performance in photosynthetic physiology and leaf morphology of the O. hosiei seedlings under a high CO2 environment increased the height and ground diameter by 6.90% and 13.35% in the E2 treatment compared with CK, respectively. 【Conclusion】 Elevated atmospheric CO2 concentrations increased the photosynthetic substrates of O. hosiei seedlings’, improved the photosynthetic system of light energy capture, and increased photosynthetic activity. Light protection was not affected and the blade shape changed with the elevated CO2 concentration to produce adaptability. Finally, the O. hosiei seedlings under the condition of elevated atmospheric CO2 concentration showed synergistic photosynthetic physiological and morphological changes that promoted growth.

Key words

Ormosia hosiei / CO2 concentration / photosynthetic physiology / leaf structure / apparent characteristics

Cite this article

Download Citations
WEI Yi , WEI Xiaoli , WANG Mingbin , et al . Effects of elevated atmospheric CO2 concentration on the photosynthetic physiology and morphology of Ormosia hosiei seedlings[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2023, 47(6): 124-132 https://doi.org/10.12302/j.issn.1000-2006.202208059

References

[1]
WMO. The state of greenhouse gases in the atmosphere based on global observations through 2020[J]. WMO Greenhouse Gas Bulletin Organization, 2021, 17:1-9.
[2]
IPCC. Climate change 2022: mitigation of climate change[R]. Contribution of Working Group Ⅲ to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2022.
[3]
王晓, 韦小丽, 吴高殷, 等. CO2浓度升高条件下不同氮素供应对闽楠幼苗光合特性及生长的影响[J]. 林业科学, 2021, 57(4): 173-181.
WANG X, WEI X L, WU G Y, et al. Effects of different nitrogen forms and supply on photosynthetic characteristics and growth of Phoebe bournei seedlings under elevated CO2 concentration[J]. Sci Silvae Sin, 2021, 57(4): 173-181. DOI: 10.11707/j.1001-7488.20210418.
[4]
张其德, 卢从明, 刘丽娜, 等. CO2浓度倍增对垂柳和杜仲叶绿体吸收光能和激发能分配的影响[J]. 植物学报, 1997, 39(9): 845-848.
ZHANG Q D, LU C M, LIU L N, et al. Effects of doubled CO2 concentration on light energy absorption an excitation energy distribution between PSⅡ and PSI in chloroplasts of weeping willow and eucommia[J]. J Integr Plant Biol, 1997, 39(9): 845-848.
[5]
王为民, 王晨, 李春俭, 等. 大气二氧化碳浓度升高对植物生长的影响[J]. 西北植物学报, 2000, 20(4): 676-683.
WANG W M, WANG C, LI C J, et al. Effects of elevated atmospheric CO2 concentrations on growth of plants[J]. Acta Botanica Boreali-Occidentalia Sinica, 2000, 20(4): 676-683. DOI: 10.3321/j.issn:1000-4025.2000.04.030.
[6]
BROWN M E, FUNK C C. Food security and climate change[M]. Chester: Wiley-Blackwell Press, 2018: 51-69.
[7]
DAMATTA F M, GODOY A G, MENEZES-SILVA P E, et al. Sustained enhancement of photosynthesis in coffee trees grown under free-air CO2 enrichment conditions: disentangling the contributions of stomatal, mesophyll, and biochemical limitations[J]. J Exp Bot, 2016, 67(1): 341-352. DOI: 10.1093/jxb/erv463.
[8]
王晓. CO2浓度升高条件下氮素调控闽楠幼苗光合适应的机理研究[D]. 贵阳: 贵州大学, 2020.
WANG X. Mechanism of nitrogen regulating photosynthetic acclimation of Phoebe bournei seedlings under elevated CO2 concentration[D]. Guiyang: Guizhou University, 2020.
[9]
徐胜, 陈玮, 何兴元, 等. 高浓度CO2对树木生理生态的影响研究进展[J]. 生态学报, 2015, 35(8): 2452-2460.
XU S, CHEN W, HE X Y, et al. Research advance in effect of elevated CO2 on eco-physiology of trees[J]. Acta Ecol Sin, 2015, 35(8): 2452-2460. DOI: 10.5846/stxb201306101603.
[10]
王勋陵, 王静. 植物形态结构与环境[M]. 兰州: 兰州大学出版社, 1989: 105-138.
WANG X L, WANG J. Plant morphological structure and environment[M]. Lanzhou: Lanzhou University Press, 1989: 105-138.
[11]
TERASHIMA I, HANBA Y T, THOLEN D, et al. Leaf functional anatomy in relation to photosynthesis[J]. Plant Physiol, 2011, 155(1): 108-116. DOI: 10.1104/pp.110.165472.
[12]
国家林业局,农业农村部. 国家重点保护野生植物名录[N]. 2021-09-07.
SFA, MARA. List of national key protected wild plants in China[N]. 2021-09-07.
[13]
赵颖, 何云芳, 周志春, 等. 浙闽五个红豆树自然保留种群的遗传多样性[J]. 生态学杂志, 2008, 27(8): 1279-1283.
ZHAO Y, HE Y F, ZHOU Z C, et al. Genetic diversity of five naturally reserved Ormosia hosiei populations in Zhejiang and Fujian Provinces[J]. Chin J Ecol, 2008, 27(8): 1279-1283.
[14]
郑天汉. 红豆树生物生态学特征研究[D]. 福州: 福建农林大学, 2007.
ZHENG T H. Studies on the biological and ecological characters of Ormosia hosiei[D]. Fuzhou: Fujian Agriculture and Forestry University, 2007. DOI: 10.7666/d.y1878872.
[15]
张群芳, 彭培好, 王娟, 等. 不同干扰条件下红豆树种群数量特征的比较[J]. 植物研究, 2015, 35(5): 735-740.
ZHANG Q F, PENG P H, WANG J, et al. Quantitative characteristics of Ormosia hosiei under different disturbance levels[J]. Bull Bot Res, 2015, 35(5): 735-740. DOI: 10.7525/j.issn.1673-5102.2015.05.016.
[16]
韩豪, 罗长能, 韦小丽, 等. 红豆树幼树生长和生理对不同岩性土壤的响应[J]. 北方园艺, 2020(13): 59-65.
HAN H, LUO C N, WEI X L, et al. Responses of growth and physiological of Ormosia hosiei young tree to different lithological soils[J]. North Hortic, 2020(13): 59-65. DOI: 10.11937/bfyy.20193517.
[17]
刘鹏, 阙生全, 刘丽婷, 等. 红豆树研究现状及濒危保护建议[J]. 亚热带植物科学, 2017, 46(1): 96-100.
LIU P, QUE S Q, LIU L T, et al. Research status and endangered conservation strategy of Ormosia hosiei[J]. Subtrop Plant Sci, 2017, 46(1): 96-100. DOI: 10.3969/j.issn.1009-7791.2017.01.019.
[18]
芮雯奕, 田云录, 张纪林, 等. 干旱胁迫对6个树种叶片光合特性的影响[J]. 南京林业大学学报(自然科学版), 2012, 36(1): 68-72.
RUI W Y, TIAN Y L, ZHANG J L, et al. Effect of drought stress on photosynthetic characteristic of six tree species[J]. J Nanjing For Univ (Nat Sci Ed), 2012, 36(1): 68-72. DOI: 10.3969/j.issn.1000-2006.2012.01.014.
[19]
刘燕. 深色有隔内生真菌调控红豆树生长及耐旱响应机理[D]. 贵阳: 贵州大学, 2020.
LIU Y. Mechanism of dark isolated endophytic fungi regulating the growth and drought tolerance of Ormosia hosiei Hensl[D]. Guiyang: Guizhou University, 2020.
[20]
陈章和, 林丰平, 张德明. 高CO2浓度下4种豆科乔木种子萌发和幼苗生长[J]. 植物生态学报, 1999, 23(2): 161.
CHEN Z H, LIN F P, ZHANG D M. Physio ecological study on the seed germination and seedling growth in four legume tree species under elevated CO2 concentration[J]. Chin J plan Ecol, 1999, 23(2): 161. DOI: 10.3969/j.issn.1001-005X.2000.01.009.
[21]
林丰平, 陈章和, 陈兆平, 等. 高CO2浓度下豆科4种乔木幼苗的生理生化反应[J]. 植物生态学报, 1999, 23(3): 220.
LIN F P, CHEN Z H, CHEN Z P, et al. Physiological and biochemical responses of four tree seedlings in Leguminosae under high CO2 concentration[J]. Chin J Plan Eco, 1999, 23(3): 220. DOI: 10.3321/j.issn:1000-0933.2005.02.006.
[22]
段洪浪. OTC中植物与土壤碳积累对C-N交互的响应与适应[D]. 北京: 中国科学院华南植物研究所, 2009.
DUAN H L. Responses and adaptations of plant and soil carbon accumulation to C-N interaction in OTC[D]. Beijing: Institute of Botany, Chinese Academy of Sciences, 2009.
[23]
邱浩杰, 孙杰杰, 徐达, 等. 末次盛冰期以来红豆树在不同气候变化情景下的分布动态[J]. 生态学报, 2020, 40(9): 3016-3026.
QIU H J, SUN J J, XU D, et al. The distribution dynamics of Ormosia hosiei under different climate change scenarios since the Last Glacial Maximum[J]. Acta Ecol Sin, 2020, 40(9): 3016-3026. DOI: 10.5846/stxb201904080688.
[24]
邹琦. 植物生理学实验指导[M]. 北京: 中国农业出版社, 2000: 68-75.
ZOU Q. Experimental instruction of plant physiology[M]. Beijing: China Agriculture Press, 2000:68-75.
[25]
吕冬霞. 细胞生物学实验技术[M]. 北京: 科学出版社, 2012.
LV D X. Experimental technology of cell biology[M]. Beijing: Science Press, 2012.
[26]
王学奎. 植物生理生化实验原理和技术[M]. 2版. 北京: 高等教育出版社, 2006.
WANG X K. Principles and techniques of plant physiological biochemical experiment[M]. 2nd ed. Beijing: Higher Education Press, 2006.
[27]
潘瑞炽. 植物生理学[M]. 7版. 北京: 高等教育出版社, 2012.
PAN R C. Plant physiology[M]. 7th ed. Beijing: Higher Education Press, 2012.
[28]
王建波, 倪红伟, 付小玲, 等. 大气CO2浓度升高对小叶章光合色素含量和光合参数的影响[J]. 国土与自然资源研究, 2013(1): 82-83.
WANG J B, NI H W, FU X L, et al. Effects of elevated CO2 on photosynthetic pigments content and characteristics of Calamagrostis angustifolia[J]. Territ Nat Resour Study, 2013(1): 82-83. DOI: 10.16202/j.cnki.tnrs.2013.01.028.
[29]
潘鸿, 曹吉鑫, 陈展, 等. CO2浓度升高对木荷幼苗光合特征的影响[J]. 生态学杂志, 2022, 41(5): 865-872.
PAN H, CAO J X, CHEN Z, et al. Effects of elevated CO2 concentration on photosynthetic characteristics of Schima superba seedlings[J]. Chin J Ecol, 2022, 41(5): 865-872. DOI: 10.13292/j.1000-4890.202203.036.
[30]
叶思源, 尚鹤, 陈展, 等. 不同浓度CO2对马尾松幼苗光合特性及单萜烯释放的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(6): 71-78.
YE S Y, SHANG H, CHEN Z, et al. Effects of elevated CO2 on photosynthetic characteristics and monoterpene emissions in Pinus massoniana seedlings[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(6): 71-78. DOI: 10.3969/j.issn.1000-2006.201903034.
[31]
何平. 大气温室效应与植物光合性大气CO2浓度升高对油桐和烟草光合气体交换及叶的脂类组成的影响[J]. 中南林学院学报, 1998, 18(3): 17-22.
HE P. Green house effect and plant photosynthesis: a comparison studying on the influences of 700×10-6 CO2 in air on photosynthetic gas exchange, compositions of lipids and fatty acids in leaf of Nicotiana tabacum and Aleurites montana[J]. J Cent South For Univ, 1998, 18(3): 17-22.
[32]
蒋跃林, 张仕定, 张庆国. 大气CO2浓度升高对茶树光合生理特性的影响[J]. 茶叶科学, 2005, 25(1): 43-48.
JIANG Yuelin, ZHANG Shiding, ZHANG Qingguo. Effects of elevated atmospheric CO2 concentration on photo-physiological characteristics of tea plant[J]. J Tea Sci, 2005, 25(1): 43-48. DOI: 10.3969/j.issn.1000-369X.2005.01.007.
[33]
孟宇辰, 洛方舟, 张嘉烁, 等. 高浓度CO2对林木光合和呼吸作用影响研究进展[J]. 辽宁林业科技, 2016(1): 41-45.
MENG Y C, LUO F Z, ZHANG J L, et al. Research progress on effects of high concentration of CO2 on photosynthesis and respiration of forest trees[J]. Liaoning For Sci Technol, 2016(1): 41-45.
[34]
宝俐, 董金龙, 李汛, 等. CO2浓度升高和氮素供应对黄瓜叶片光合色素的影响[J]. 土壤, 2016, 48(4): 653-660.
BAO L, DONG J L, LI X, et al. Effects of elevated CO2, N concentration and N forms on photosynthetic pigments concentration and composition[J]. Soils, 2016, 48(4): 653-660. DOI: 10.13758/j.cnki.tr.2016.04.005.
[35]
PARRY M A J, ANDRALOJC P J, MITCHELL R A C, et al. Manipulation of RuBisCO: The amount, activity, function and regulation[J]. J Exp Bot, 2003, 386: 1321-1333. DOI: 10.1093/jxb/erg141.
[36]
ZHENG Y P, LI F, HAO L H, et al. Elevated CO2 concentration induces photosynthetic down-regulation with changes in leaf structure, non-structural carbohydrates and nitrogen content of soybean[J]. BMC Plant Bio, 2019, 19(1): 255. DOI: 10.1186/s12870-019-1788-9.
[37]
PRASAD P V V, VU J C V, BOOTE K J, et al. Enhancement in leaf photosynthesis and upregulation of RuBisCO in the C4 sorghum plant at elevated growth carbon dioxide and temperature occur at early stages of leaf ontogeny[J]. Funct Plant Biol, 2009, 36(9): 761-769. DOI: 10.1071/FP09043.
[38]
张远彬. CO2浓度升高对红桦幼苗生理与生长的影响[D]. 成都: 中国科学院研究生院(成都生物研究所), 2007.
ZHANG Y B. Effects of elevated CO2 concentration on physiological characteristics and growth of birch (Betula albosinensis Burk.) seedlings[D]. Chengdu: Chengdu Institute of Biology, Chinese Academy of Sciences, 2007.
[39]
冷平生, 马世超, 李树蓉, 等. 增施CO2气肥对国槐幼苗生长与生理特性的影响[J]. 林业科学, 2002, 38(1): 44-49.
LENG P S, MA S C, LI S R, et al. Effects of enrichment on growth and physiological properties of Sophora japonica L. seedlings[J]. Sci Silvae Sin, 2002, 38(1): 44-49. DOI: 10.3321/j.issn:1001-7488.2002.01.007.
[40]
谢会成, 姜志林. 栓皮栎对CO2增长的生理生态响应[J]. 西南林学院学报, 2002, 22(1): 1-4.
XIE H C, JIANG Z L. The ecophsiological response of Quercus variabilis to elevated CO2[J]. J Southwest For Coll, 2002, 22(1): 1-4. DOI: 10.3969/j.issn.2095-1914.2002.01.001.
[41]
ROBERNTZ P, STOCKFORS J. Effects of elevated CO2 concentration and nutrition on net photosynthesis, stomatal conductance and needle respiration of field-grown Norway spruce trees[J]. Tree Physiol, 1998(4): 233-241. DOI: 10.1093/treephys/18.4.233.
[42]
侯晶东, 曹兵, 宋丽华. CO2浓度倍增对宁夏枸杞光合特性的影响[J]. 南京林业大学学报(自然科学版), 2012, 36(5): 71-76.
HOU J D, CAO B, SONG L H. Effect of doubled CO2 concentration on photosynthesis characteristics of Lycium barbarum seedling[J]. J Nanjing For Univ (Nat Sci Ed), 2012, 36(5): 71-76. DOI: 10.3969/j.issn.1000-2006.2012.05.013.
[43]
SREEHARSHA R V, SEKHAR K M, REDDY A R. Delayed flowering is associated with lack of photosynthetic acclimation in Pigeon pea (Cajanus cajan L.) grown under elevated CO2[J]. Plant Sci, 2015, 231: 82-93. DOI: 10.1016/j.plantsci.2014.11.012.
[44]
张兆斌. CO2、温度升高对柿幼树光合作用及水分利用效率影响的研究[D]. 泰安: 山东农业大学, 2009.
ZHANG Z B. Study on effects of CO2 enrichment and high temperature on photosynthesis and water use in Diospyros kaki[D]. Taian: Shandong Agricultural University, 2009. DOI: 10.7666/d.y1539208.
[45]
张仟雨, 宗毓铮, 董琦. 大气CO2浓度升高对大豆光合生理的影响[J]. 山西农业科学, 2016, 44(11): 1675-1679.
ZHANG Q Y, ZONG Y Z, DONG Q, et al. Effects of elevated atmospheric CO2 concentration on soybean photosynthesis[J]. J Shanxi Agric Sci, 2016, 44(11): 1675-1679. DOI: 10.3969/j.issn.1002-2481.2016.11.23.
[46]
GOVINDJE E. Sixty-three years since Kautsky Chlorophyll a fluorescence[J]. Funct Plant Biol, 1995, 22(2): 131. DOI: 10.1071/pp9950131.
[47]
SCHREIBER U, BILGER W, NEUBAUER C. Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis[M]. SCHULZEE D, CALDWELLM M. Ecophysiology of Photosynthesis. Berlin, Heidelberg: Springer, 1995: 49-70. DOI: 10.1007/978-3-642-79354-7_3.
[48]
王兰兰, 李琦, 宋晓卉, 等. 环境条件对植物叶绿素荧光参数影响研究进展[J]. 沈阳师范大学学报(自然科学版), 2019, 37(4): 362-367.
WANG L L, LI Q, SONG X H, et al. Effects of environmental conditions on chlorophyll fluorescence parameters of plants[J]. J Shenyang Norm Univ (Nat Sci Ed), 2019, 37(4): 362-367. DOI: 10.3969/j.issn.1673-5862.2019.04.013.
[49]
张守仁. 叶绿素荧光动力学参数的意义及讨论[J]. 植物学通报, 1999, 34(4): 444-448.
ZHANG S R. A discussion on chlorophyll fluorescence kinetics parameters and their significance[J]. Chin Bull Bot, 1999, 34 (4): 444-448. DOI: 10.3969/j.issn.1674-3466.1999.04.021.
[50]
VAN KOOTEN O, SNEL J F. The use of chlorophyll fluorescence nomenclature in plant stress physiology[J]. Photosynth Res, 1990, 25(3): 147-150. DOI: 10.1007/BF00033156.
[51]
胡晓雪, 杜维俊, 杨珍平, 等. 大气CO2浓度和气温升高对野生大豆光合作用的影响[J]. 山西农业科学, 2015, 43(7): 798-801, 853.
HU X X, DU W J, YANG Z P, et al. Effect of elevated CO2 concentration and increased temperature on the photosynthesis of wild soybean[J]. J Shanxi Agric Sci, 2015, 43(7): 798-801, 853. DOI: 10.3969/j.issn.1002-2481.2015.07.08.
[52]
邢璐. 银杏(Ginkgo biloba L.)幼苗叶片光合特性及气孔参数对CO2浓度升高的响应[D]. 南京: 南京农业大学, 2009.
XING L. Responses of photosynthetic characteristics and stomata parameters to elevated CO2 in Ginkgo seedlings(Ginkgo biloba L.)[D]. Nanjing: Nanjing Agricultural University, 2009. DOI: 10.7666/d.y1539208.
[53]
PRITCHARD S G, ROGERS H H, PRIOR S A, et al. Elevated CO2 and plant structure: a review[J]. Glob Change Biol, 1999, 5(7): 807-837. DOI: 10.1046/j.1365-2486.1999.00268.x.
[54]
韩梅, 吉成均, 左闻韵, 等. CO2浓度和温度升高对11种植物叶片解剖特征的影响[J]. 生态学报, 2006, 26(2): 326-333.
HAN M, JI C J, ZUO W Y, et al. Interactive effects of elevated CO2 and temperature on the leaf anatomical characteristics of eleven species[J]. Acta Ecol Sin, 2006, 26(2): 326-333. DOI: 10.3321/j.issn:1000-0933.2006.02.003.
[55]
孙嘉伟, 罗丽莹, 李淑英, 等. 闽楠叶片功能性状及表型可塑性对其与杉木混交的响应[J]. 生态学报, 2021, 41(7): 2855-2866.
SUN J W, LUO L Y, LI S Y, et al. Response of Phoebe bournei leaf functional traits and phenotypic plasticity to its mixture with the Chinese fir[J]. Acta Ecol Sin, 2021, 41(7): 2855-2866. DOI: 10.5846/stxb201905080930.

Footnotes

PDF(7962 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/