JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (6): 124-132.doi: 10.12302/j.issn.1000-2006.202208059
Previous Articles Next Articles
WEI Yi1(), WEI Xiaoli1,2,*(), WANG Mingbin1, WANG Man1, YU Dalong1
Received:
2022-08-26
Revised:
2022-10-24
Online:
2023-11-30
Published:
2023-11-23
CLC Number:
WEI Yi, WEI Xiaoli, WANG Mingbin, WANG Man, YU Dalong. Effects of elevated atmospheric CO2 concentration on the photosynthetic physiology and morphology of Ormosia hosiei seedlings[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(6): 124-132.
Table 1
Effects of different CO2 concentrations on gas exchange parameters of Ormosia hosiei seedlings"
处理 treatment | Pn/ (μmol·m-2·s-1) | Tr/ (mmol·m-2·s-1) | Gs/ (mol·m-2·s-1) | Ci/ (μmol·m-2·s-1) | EWUE/ (mmol·mol-1) |
---|---|---|---|---|---|
CK | 3.39±0.42 c | 0.78±0.11 b | 0.043±0.002 b | 253.03±25.59 c | 4.45±1.27 c |
E1 | 6.93±0.99 b | 0.97±0.11 ab | 0.060±0.010 a | 381.85±28.89 b | 7.20±0.98 b |
E2 | 11.37±0.39 a | 1.09±0.03 a | 0.069±0.002 a | 499.71±21.90 a | 10.41±0.54 a |
Table 2
Effects of different CO2 concentrations on apparent characteristics of O. hosiei seedlings"
处理 treatment | 叶面积/cm2 LA | 叶干质量/g LDW | 比叶重/(g·cm-2) leaf specific weight | 株高净生长量/cm height net growth | 地径净生长量/mm ground diameter net growth | 高径比/(cm·mm-1) ratio of height to ground diameter |
---|---|---|---|---|---|---|
CK | 17.21±0.47 c | 0.86±0.10 a | 0.50±0.006 a | 9.17±1.52 b | 1.05±0.10 c | 8.09±0.42 a |
E1 | 22.17±1.02 b | 0.84±0.07 a | 0.38±0.004 b | 9.50±1.04 b | 1.83±0.97 b | 7.34±0.25 b |
E2 | 28.39±0.91 a | 0.98±0.04 a | 0.34±0.004 b | 14.83±0.23 a | 2.37±0.10 a | 7.61±0.11 b |
[1] | WMO. The state of greenhouse gases in the atmosphere based on global observations through 2020[J]. WMO Greenhouse Gas Bulletin Organization, 2021, 17:1-9. |
[2] | IPCC. Climate change 2022: mitigation of climate change[R]. Contribution of Working Group Ⅲ to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2022. |
[3] | 王晓, 韦小丽, 吴高殷, 等. CO2浓度升高条件下不同氮素供应对闽楠幼苗光合特性及生长的影响[J]. 林业科学, 2021, 57(4): 173-181. |
WANG X, WEI X L, WU G Y, et al. Effects of different nitrogen forms and supply on photosynthetic characteristics and growth of Phoebe bournei seedlings under elevated CO2 concentration[J]. Sci Silvae Sin, 2021, 57(4): 173-181. DOI: 10.11707/j.1001-7488.20210418. | |
[4] | 张其德, 卢从明, 刘丽娜, 等. CO2浓度倍增对垂柳和杜仲叶绿体吸收光能和激发能分配的影响[J]. 植物学报, 1997, 39(9): 845-848. |
ZHANG Q D, LU C M, LIU L N, et al. Effects of doubled CO2 concentration on light energy absorption an excitation energy distribution between PSⅡ and PSI in chloroplasts of weeping willow and eucommia[J]. J Integr Plant Biol, 1997, 39(9): 845-848. | |
[5] | 王为民, 王晨, 李春俭, 等. 大气二氧化碳浓度升高对植物生长的影响[J]. 西北植物学报, 2000, 20(4): 676-683. |
WANG W M, WANG C, LI C J, et al. Effects of elevated atmospheric CO2 concentrations on growth of plants[J]. Acta Botanica Boreali-Occidentalia Sinica, 2000, 20(4): 676-683. DOI: 10.3321/j.issn:1000-4025.2000.04.030. | |
[6] | BROWN M E, FUNK C C. Food security and climate change[M]. Chester: Wiley-Blackwell Press, 2018: 51-69. |
[7] | DAMATTA F M, GODOY A G, MENEZES-SILVA P E, et al. Sustained enhancement of photosynthesis in coffee trees grown under free-air CO2 enrichment conditions: disentangling the contributions of stomatal, mesophyll, and biochemical limitations[J]. J Exp Bot, 2016, 67(1): 341-352. DOI: 10.1093/jxb/erv463. |
[8] | 王晓. CO2浓度升高条件下氮素调控闽楠幼苗光合适应的机理研究[D]. 贵阳: 贵州大学, 2020. |
WANG X. Mechanism of nitrogen regulating photosynthetic acclimation of Phoebe bournei seedlings under elevated CO2 concentration[D]. Guiyang: Guizhou University, 2020. | |
[9] | 徐胜, 陈玮, 何兴元, 等. 高浓度CO2对树木生理生态的影响研究进展[J]. 生态学报, 2015, 35(8): 2452-2460. |
XU S, CHEN W, HE X Y, et al. Research advance in effect of elevated CO2 on eco-physiology of trees[J]. Acta Ecol Sin, 2015, 35(8): 2452-2460. DOI: 10.5846/stxb201306101603. | |
[10] | 王勋陵, 王静. 植物形态结构与环境[M]. 兰州: 兰州大学出版社, 1989: 105-138. |
WANG X L, WANG J. Plant morphological structure and environment[M]. Lanzhou: Lanzhou University Press, 1989: 105-138. | |
[11] | TERASHIMA I, HANBA Y T, THOLEN D, et al. Leaf functional anatomy in relation to photosynthesis[J]. Plant Physiol, 2011, 155(1): 108-116. DOI: 10.1104/pp.110.165472. |
[12] | 国家林业局,农业农村部. 国家重点保护野生植物名录[N]. 2021-09-07. |
SFA, MARA. List of national key protected wild plants in China[N]. 2021-09-07. | |
[13] | 赵颖, 何云芳, 周志春, 等. 浙闽五个红豆树自然保留种群的遗传多样性[J]. 生态学杂志, 2008, 27(8): 1279-1283. |
ZHAO Y, HE Y F, ZHOU Z C, et al. Genetic diversity of five naturally reserved Ormosia hosiei populations in Zhejiang and Fujian Provinces[J]. Chin J Ecol, 2008, 27(8): 1279-1283. | |
[14] | 郑天汉. 红豆树生物生态学特征研究[D]. 福州: 福建农林大学, 2007. |
ZHENG T H. Studies on the biological and ecological characters of Ormosia hosiei[D]. Fuzhou: Fujian Agriculture and Forestry University, 2007. DOI: 10.7666/d.y1878872. | |
[15] | 张群芳, 彭培好, 王娟, 等. 不同干扰条件下红豆树种群数量特征的比较[J]. 植物研究, 2015, 35(5): 735-740. |
ZHANG Q F, PENG P H, WANG J, et al. Quantitative characteristics of Ormosia hosiei under different disturbance levels[J]. Bull Bot Res, 2015, 35(5): 735-740. DOI: 10.7525/j.issn.1673-5102.2015.05.016. | |
[16] | 韩豪, 罗长能, 韦小丽, 等. 红豆树幼树生长和生理对不同岩性土壤的响应[J]. 北方园艺, 2020(13): 59-65. |
HAN H, LUO C N, WEI X L, et al. Responses of growth and physiological of Ormosia hosiei young tree to different lithological soils[J]. North Hortic, 2020(13): 59-65. DOI: 10.11937/bfyy.20193517. | |
[17] | 刘鹏, 阙生全, 刘丽婷, 等. 红豆树研究现状及濒危保护建议[J]. 亚热带植物科学, 2017, 46(1): 96-100. |
LIU P, QUE S Q, LIU L T, et al. Research status and endangered conservation strategy of Ormosia hosiei[J]. Subtrop Plant Sci, 2017, 46(1): 96-100. DOI: 10.3969/j.issn.1009-7791.2017.01.019. | |
[18] | 芮雯奕, 田云录, 张纪林, 等. 干旱胁迫对6个树种叶片光合特性的影响[J]. 南京林业大学学报(自然科学版), 2012, 36(1): 68-72. |
RUI W Y, TIAN Y L, ZHANG J L, et al. Effect of drought stress on photosynthetic characteristic of six tree species[J]. J Nanjing For Univ (Nat Sci Ed), 2012, 36(1): 68-72. DOI: 10.3969/j.issn.1000-2006.2012.01.014. | |
[19] | 刘燕. 深色有隔内生真菌调控红豆树生长及耐旱响应机理[D]. 贵阳: 贵州大学, 2020. |
LIU Y. Mechanism of dark isolated endophytic fungi regulating the growth and drought tolerance of Ormosia hosiei Hensl[D]. Guiyang: Guizhou University, 2020. | |
[20] | 陈章和, 林丰平, 张德明. 高CO2浓度下4种豆科乔木种子萌发和幼苗生长[J]. 植物生态学报, 1999, 23(2): 161. |
CHEN Z H, LIN F P, ZHANG D M. Physio ecological study on the seed germination and seedling growth in four legume tree species under elevated CO2 concentration[J]. Chin J plan Ecol, 1999, 23(2): 161. DOI: 10.3969/j.issn.1001-005X.2000.01.009. | |
[21] | 林丰平, 陈章和, 陈兆平, 等. 高CO2浓度下豆科4种乔木幼苗的生理生化反应[J]. 植物生态学报, 1999, 23(3): 220. |
LIN F P, CHEN Z H, CHEN Z P, et al. Physiological and biochemical responses of four tree seedlings in Leguminosae under high CO2 concentration[J]. Chin J Plan Eco, 1999, 23(3): 220. DOI: 10.3321/j.issn:1000-0933.2005.02.006. | |
[22] | 段洪浪. OTC中植物与土壤碳积累对C-N交互的响应与适应[D]. 北京: 中国科学院华南植物研究所, 2009. |
DUAN H L. Responses and adaptations of plant and soil carbon accumulation to C-N interaction in OTC[D]. Beijing: Institute of Botany, Chinese Academy of Sciences, 2009. | |
[23] | 邱浩杰, 孙杰杰, 徐达, 等. 末次盛冰期以来红豆树在不同气候变化情景下的分布动态[J]. 生态学报, 2020, 40(9): 3016-3026. |
QIU H J, SUN J J, XU D, et al. The distribution dynamics of Ormosia hosiei under different climate change scenarios since the Last Glacial Maximum[J]. Acta Ecol Sin, 2020, 40(9): 3016-3026. DOI: 10.5846/stxb201904080688. | |
[24] | 邹琦. 植物生理学实验指导[M]. 北京: 中国农业出版社, 2000: 68-75. |
ZOU Q. Experimental instruction of plant physiology[M]. Beijing: China Agriculture Press, 2000:68-75. | |
[25] | 吕冬霞. 细胞生物学实验技术[M]. 北京: 科学出版社, 2012. |
LV D X. Experimental technology of cell biology[M]. Beijing: Science Press, 2012. | |
[26] | 王学奎. 植物生理生化实验原理和技术[M]. 2版. 北京: 高等教育出版社, 2006. |
WANG X K. Principles and techniques of plant physiological biochemical experiment[M]. 2nd ed. Beijing: Higher Education Press, 2006. | |
[27] | 潘瑞炽. 植物生理学[M]. 7版. 北京: 高等教育出版社, 2012. |
PAN R C. Plant physiology[M]. 7th ed. Beijing: Higher Education Press, 2012. | |
[28] | 王建波, 倪红伟, 付小玲, 等. 大气CO2浓度升高对小叶章光合色素含量和光合参数的影响[J]. 国土与自然资源研究, 2013(1): 82-83. |
WANG J B, NI H W, FU X L, et al. Effects of elevated CO2 on photosynthetic pigments content and characteristics of Calamagrostis angustifolia[J]. Territ Nat Resour Study, 2013(1): 82-83. DOI: 10.16202/j.cnki.tnrs.2013.01.028. | |
[29] | 潘鸿, 曹吉鑫, 陈展, 等. CO2浓度升高对木荷幼苗光合特征的影响[J]. 生态学杂志, 2022, 41(5): 865-872. |
PAN H, CAO J X, CHEN Z, et al. Effects of elevated CO2 concentration on photosynthetic characteristics of Schima superba seedlings[J]. Chin J Ecol, 2022, 41(5): 865-872. DOI: 10.13292/j.1000-4890.202203.036. | |
[30] | 叶思源, 尚鹤, 陈展, 等. 不同浓度CO2对马尾松幼苗光合特性及单萜烯释放的影响[J]. 南京林业大学学报(自然科学版), 2020, 44(6): 71-78. |
YE S Y, SHANG H, CHEN Z, et al. Effects of elevated CO2 on photosynthetic characteristics and monoterpene emissions in Pinus massoniana seedlings[J]. J Nanjing For Univ (Nat Sci Ed), 2020, 44(6): 71-78. DOI: 10.3969/j.issn.1000-2006.201903034. | |
[31] | 何平. 大气温室效应与植物光合性大气CO2浓度升高对油桐和烟草光合气体交换及叶的脂类组成的影响[J]. 中南林学院学报, 1998, 18(3): 17-22. |
HE P. Green house effect and plant photosynthesis: a comparison studying on the influences of 700×10-6 CO2 in air on photosynthetic gas exchange, compositions of lipids and fatty acids in leaf of Nicotiana tabacum and Aleurites montana[J]. J Cent South For Univ, 1998, 18(3): 17-22. | |
[32] | 蒋跃林, 张仕定, 张庆国. 大气CO2浓度升高对茶树光合生理特性的影响[J]. 茶叶科学, 2005, 25(1): 43-48. |
JIANG Yuelin, ZHANG Shiding, ZHANG Qingguo. Effects of elevated atmospheric CO2 concentration on photo-physiological characteristics of tea plant[J]. J Tea Sci, 2005, 25(1): 43-48. DOI: 10.3969/j.issn.1000-369X.2005.01.007. | |
[33] | 孟宇辰, 洛方舟, 张嘉烁, 等. 高浓度CO2对林木光合和呼吸作用影响研究进展[J]. 辽宁林业科技, 2016(1): 41-45. |
MENG Y C, LUO F Z, ZHANG J L, et al. Research progress on effects of high concentration of CO2 on photosynthesis and respiration of forest trees[J]. Liaoning For Sci Technol, 2016(1): 41-45. | |
[34] | 宝俐, 董金龙, 李汛, 等. CO2浓度升高和氮素供应对黄瓜叶片光合色素的影响[J]. 土壤, 2016, 48(4): 653-660. |
BAO L, DONG J L, LI X, et al. Effects of elevated CO2, N concentration and N forms on photosynthetic pigments concentration and composition[J]. Soils, 2016, 48(4): 653-660. DOI: 10.13758/j.cnki.tr.2016.04.005. | |
[35] | PARRY M A J, ANDRALOJC P J, MITCHELL R A C, et al. Manipulation of RuBisCO: The amount, activity, function and regulation[J]. J Exp Bot, 2003, 386: 1321-1333. DOI: 10.1093/jxb/erg141. |
[36] | ZHENG Y P, LI F, HAO L H, et al. Elevated CO2 concentration induces photosynthetic down-regulation with changes in leaf structure, non-structural carbohydrates and nitrogen content of soybean[J]. BMC Plant Bio, 2019, 19(1): 255. DOI: 10.1186/s12870-019-1788-9. |
[37] | PRASAD P V V, VU J C V, BOOTE K J, et al. Enhancement in leaf photosynthesis and upregulation of RuBisCO in the C4 sorghum plant at elevated growth carbon dioxide and temperature occur at early stages of leaf ontogeny[J]. Funct Plant Biol, 2009, 36(9): 761-769. DOI: 10.1071/FP09043. |
[38] | 张远彬. CO2浓度升高对红桦幼苗生理与生长的影响[D]. 成都: 中国科学院研究生院(成都生物研究所), 2007. |
ZHANG Y B. Effects of elevated CO2 concentration on physiological characteristics and growth of birch (Betula albosinensis Burk.) seedlings[D]. Chengdu: Chengdu Institute of Biology, Chinese Academy of Sciences, 2007. | |
[39] | 冷平生, 马世超, 李树蓉, 等. 增施CO2气肥对国槐幼苗生长与生理特性的影响[J]. 林业科学, 2002, 38(1): 44-49. |
LENG P S, MA S C, LI S R, et al. Effects of enrichment on growth and physiological properties of Sophora japonica L. seedlings[J]. Sci Silvae Sin, 2002, 38(1): 44-49. DOI: 10.3321/j.issn:1001-7488.2002.01.007. | |
[40] | 谢会成, 姜志林. 栓皮栎对CO2增长的生理生态响应[J]. 西南林学院学报, 2002, 22(1): 1-4. |
XIE H C, JIANG Z L. The ecophsiological response of Quercus variabilis to elevated CO2[J]. J Southwest For Coll, 2002, 22(1): 1-4. DOI: 10.3969/j.issn.2095-1914.2002.01.001. | |
[41] | ROBERNTZ P, STOCKFORS J. Effects of elevated CO2 concentration and nutrition on net photosynthesis, stomatal conductance and needle respiration of field-grown Norway spruce trees[J]. Tree Physiol, 1998(4): 233-241. DOI: 10.1093/treephys/18.4.233. |
[42] | 侯晶东, 曹兵, 宋丽华. CO2浓度倍增对宁夏枸杞光合特性的影响[J]. 南京林业大学学报(自然科学版), 2012, 36(5): 71-76. |
HOU J D, CAO B, SONG L H. Effect of doubled CO2 concentration on photosynthesis characteristics of Lycium barbarum seedling[J]. J Nanjing For Univ (Nat Sci Ed), 2012, 36(5): 71-76. DOI: 10.3969/j.issn.1000-2006.2012.05.013. | |
[43] | SREEHARSHA R V, SEKHAR K M, REDDY A R. Delayed flowering is associated with lack of photosynthetic acclimation in Pigeon pea (Cajanus cajan L.) grown under elevated CO2[J]. Plant Sci, 2015, 231: 82-93. DOI: 10.1016/j.plantsci.2014.11.012. |
[44] | 张兆斌. CO2、温度升高对柿幼树光合作用及水分利用效率影响的研究[D]. 泰安: 山东农业大学, 2009. |
ZHANG Z B. Study on effects of CO2 enrichment and high temperature on photosynthesis and water use in Diospyros kaki[D]. Taian: Shandong Agricultural University, 2009. DOI: 10.7666/d.y1539208. | |
[45] | 张仟雨, 宗毓铮, 董琦. 大气CO2浓度升高对大豆光合生理的影响[J]. 山西农业科学, 2016, 44(11): 1675-1679. |
ZHANG Q Y, ZONG Y Z, DONG Q, et al. Effects of elevated atmospheric CO2 concentration on soybean photosynthesis[J]. J Shanxi Agric Sci, 2016, 44(11): 1675-1679. DOI: 10.3969/j.issn.1002-2481.2016.11.23. | |
[46] | GOVINDJE E. Sixty-three years since Kautsky Chlorophyll a fluorescence[J]. Funct Plant Biol, 1995, 22(2): 131. DOI: 10.1071/pp9950131. |
[47] | SCHREIBER U, BILGER W, NEUBAUER C. Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis[M]. SCHULZEE D, CALDWELLM M. Ecophysiology of Photosynthesis. Berlin, Heidelberg: Springer, 1995: 49-70. DOI: 10.1007/978-3-642-79354-7_3. |
[48] | 王兰兰, 李琦, 宋晓卉, 等. 环境条件对植物叶绿素荧光参数影响研究进展[J]. 沈阳师范大学学报(自然科学版), 2019, 37(4): 362-367. |
WANG L L, LI Q, SONG X H, et al. Effects of environmental conditions on chlorophyll fluorescence parameters of plants[J]. J Shenyang Norm Univ (Nat Sci Ed), 2019, 37(4): 362-367. DOI: 10.3969/j.issn.1673-5862.2019.04.013. | |
[49] | 张守仁. 叶绿素荧光动力学参数的意义及讨论[J]. 植物学通报, 1999, 34(4): 444-448. |
ZHANG S R. A discussion on chlorophyll fluorescence kinetics parameters and their significance[J]. Chin Bull Bot, 1999, 34 (4): 444-448. DOI: 10.3969/j.issn.1674-3466.1999.04.021. | |
[50] | VAN KOOTEN O, SNEL J F. The use of chlorophyll fluorescence nomenclature in plant stress physiology[J]. Photosynth Res, 1990, 25(3): 147-150. DOI: 10.1007/BF00033156. |
[51] | 胡晓雪, 杜维俊, 杨珍平, 等. 大气CO2浓度和气温升高对野生大豆光合作用的影响[J]. 山西农业科学, 2015, 43(7): 798-801, 853. |
HU X X, DU W J, YANG Z P, et al. Effect of elevated CO2 concentration and increased temperature on the photosynthesis of wild soybean[J]. J Shanxi Agric Sci, 2015, 43(7): 798-801, 853. DOI: 10.3969/j.issn.1002-2481.2015.07.08. | |
[52] | 邢璐. 银杏(Ginkgo biloba L.)幼苗叶片光合特性及气孔参数对CO2浓度升高的响应[D]. 南京: 南京农业大学, 2009. |
XING L. Responses of photosynthetic characteristics and stomata parameters to elevated CO2 in Ginkgo seedlings(Ginkgo biloba L.)[D]. Nanjing: Nanjing Agricultural University, 2009. DOI: 10.7666/d.y1539208. | |
[53] | PRITCHARD S G, ROGERS H H, PRIOR S A, et al. Elevated CO2 and plant structure: a review[J]. Glob Change Biol, 1999, 5(7): 807-837. DOI: 10.1046/j.1365-2486.1999.00268.x. |
[54] | 韩梅, 吉成均, 左闻韵, 等. CO2浓度和温度升高对11种植物叶片解剖特征的影响[J]. 生态学报, 2006, 26(2): 326-333. |
HAN M, JI C J, ZUO W Y, et al. Interactive effects of elevated CO2 and temperature on the leaf anatomical characteristics of eleven species[J]. Acta Ecol Sin, 2006, 26(2): 326-333. DOI: 10.3321/j.issn:1000-0933.2006.02.003. | |
[55] | 孙嘉伟, 罗丽莹, 李淑英, 等. 闽楠叶片功能性状及表型可塑性对其与杉木混交的响应[J]. 生态学报, 2021, 41(7): 2855-2866. |
SUN J W, LUO L Y, LI S Y, et al. Response of Phoebe bournei leaf functional traits and phenotypic plasticity to its mixture with the Chinese fir[J]. Acta Ecol Sin, 2021, 41(7): 2855-2866. DOI: 10.5846/stxb201905080930. |
[1] | CAO Linqing, ZHONG Qiuping, ZOU Yuling, TIAN Feng, HE Yichang. Leaf structure variations and relationship with environmental factors among germplasm resources of Vernicia fordii [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2023, 47(4): 95-102. |
[2] | YE Wei, LI Qiang, CHEN Ying, HU Fei, HU Yuchen, WU Qinxia, CAO Fuliang. Annual dynamic changes in photosynthetic physiology and flavonoid components in female, male and golden-leaf Ginkgo biloba trees [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2022, 46(4): 77-86. |
[3] | YE Siyuan, SHANG He, CHEN Zhan, CAO Jixin. Effects of elevated CO2 on photosynthetic characteristics and monoterpene emissions in Pinus massoniana seedlings [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(6): 71-78. |
[4] | GUO Fangyun, CAO Bing, SONG Lihua, HA Rong. Effects of elevated CO2 concentration on Lycium barbarum fruit morphological parameters and sugar accumulation during development period in Ningxia [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2020, 44(1): 105-110. |
[5] | ZHANG Yun,CUI Xiaoyang. Effects of higher CO2 concentration on carbon and nitrogen characteristics of Pinus koraiensis seedling and its soil in an experimental environment [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2016, 40(01): 27-32. |
[6] | DU Xuhua,DING Xingcui,CHEN Yan,WU Shouguo,ZOU Yueguo,WU Guangwen. Comparison of the photosynthetic characteristics of Dendrocalamus asper introduced in different latitude regions [J]. JOURNAL OF NANJING FORESTRY UNIVERSITY, 2012, 36(06): 53-57. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||