Construction and application of the leaf area prediction model for young Quercus variabilis

LI Hui, ZHANG Wan, CHANG Yihao, YANG Xia, XIAO Xiangwei, ZHU Jingle

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (5) : 246-254.

PDF(1940 KB)
PDF(1940 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (5) : 246-254. DOI: 10.12302/j.issn.1000-2006.202208069

Construction and application of the leaf area prediction model for young Quercus variabilis

Author information +
History +

Abstract

【Objective】The leaf area prediction model of young Quercus variabilis was established to apply a rapid and nondestructive measurement. The leaf shape variation and difference characteristics of 43 different Q. variabilis families were analyzed to provide a theoretical basis for studying the genetic diversity and breeding of Q. variabilis. 【Method】A total of 43 Q. variabilis families were selected from different regions of China as the research objects. The optimal parameters of the leaf area prediction model were selected through correlation analysis and curve fitting analysis of leaf length, width, length-width ratio, length-width product, and measured leaf area.Through geometric model and curve fitting analysis, the optimal prediction model of the leaf area of young Q. variabilis was screened, and the results were verified. The differences in leaves among different families were analyzed by statistical description, one-way analysis of variance, correlation analysis, and cluster analysis. 【Result】(1) Leaf length-width product (X1×X2) was significantly correlated with the leaf area of young Q. variabilis, and the prediction model of leaf area of young Q. variabilis could be established according to this combination index. (2) The leaf area prediction model of young Q. variabilis Y=0.595X1 ×X2+257.640 was the most accurate, R2=0.946, and the standard error was as low as 32.830 cm2, which could be used to predict the leaf area of young Q. variabilis.(3) The leaf indexes of the 43 Q. variabilis families had different degrees of variation. The differences in leaves among different families and within families were large. (4) The results of the correlation analysis between leaf traits and geographical information of origin showed no significant correlation between other indexes except leaf dry weight and annual precipitation. 43 families could not be classified independently, and the regularity was not strong. 【Conclusion】A more accurate prediction model of the leaf area of young Q. variabilis Y=0.595X1×X2+257.640 was established by using leaf length and width product as parameters, which provided an efficient and nondestructive method for obtaining the leaf area of Q. variabilis and provided a theoretical basis for breeding and family selection of Q. variabilis.

Key words

Quercus variabilis family / leaf area prediction model / leaf shape / variation characteristics

Cite this article

Download Citations
LI Hui , ZHANG Wan , CHANG Yihao , et al . Construction and application of the leaf area prediction model for young Quercus variabilis[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(5): 246-254 https://doi.org/10.12302/j.issn.1000-2006.202208069

References

[1]
李娟霞, 田青. 兰州市6种园林植物叶片形态和光合生理特征[J]. 西北农林科技大学学报(自然科学版), 2022, 50(1):72-80.
LI J X, TIAN Q. Leaf morphology and photosynthetic physiological characteristics of six garden plants in Lanzhou[J]. J Northwest A & F Univ (Nat Sci Ed), 2022, 50(1):72-80.DOI:10.13207/j.cnki.jnwafu.2022.01.009.
[2]
魏龙鑫, 章异平, 李艺杰, 等. 栓皮栎叶片和枝条非结构性碳水化合物调配关系研究[J]. 南京林业大学学报(自然科学版), 2021, 45(2):96-102.
WEI L X, ZHANG Y P, LI Y J, et al. Allocation of non-structural carbohydrates (NSC) contents in leaves and branches of Quercus variabilis during its growth process[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(2):96-102.DOI: 10.12302/j.issn.1000-2006.201909029.
[3]
JAUSORO V, LLORENTE B E, APÓSTOLO N M. Structural differences between hyperhydric and normal in vitro shoots of Handroanthus impetiginosus (Mart.)[J]. Plant Cell Tiss Organ Cult, 2010, 101(2):183-191.DOI:10.1007/s11240-010-9675-y.
[4]
BAJWA G A, UMAIR M, NAWAB Y, et al. Morphometry of leaf and shoot variables to assess aboveground biomass structure and carbon sequestration by different varieties of white mulberry (Morus alba L.)[J]. J For Res, 2021, 32(6):2291-2300.DOI:10.1007/s11676-020-01268-7.
[5]
WONG C Y S, GAMON J A. The photochemical reflectance index provides an optical indicator of spring photosynthetic activation in evergreen conifers[J]. New Phytol, 2015, 206(1):196-208.DOI:10.1111/nph.13251.
[6]
薛雪, 张金池, 孙永涛, 等. 上海常绿树种固碳释氧和降温增湿效益研究[J]. 南京林业大学学报(自然科学版), 2016, 40(3):81-86.
XUE X, ZHANG J C, SUN Y T, et al. Study of carbon seqestration & oxygen release and cooling & humidifying effect of main greening tree species in Shanghai[J]. J Nanjing For Univ (Nat Sci Ed), 2016, 40(3):81-86.DOI:10.3969/j.issn.1000-2006.2016.03.014.
[7]
孙文勇, 肖小华, 王玉芳, 等. 十堰市引种栽培油橄榄品种的叶片与果实表型性状分析[J]. 湖北林业科技, 2022, 51(3):10-13.
SUN W Y, XIAO X H, WANG Y F, et al. Analysis on leaf and fruit phenotypic characters of Olea europea varieties introduced and cultivated in Shiyan[J]. Hubei For Sci Technol, 2022, 51(3):10-13. DOI:10.3969/j.issn.1004-3020.2022.03.004.
[8]
罗芊芊, 周志春, 邓宗付, 等. 南方红豆杉天然居群叶片的表型性状和氮磷化学计量特征的变异规律[J]. 植物资源与环境学报, 2021, 30(1):27-35.
LUO Q Q, ZHOU Z C, DENG Z F, et al. Variation law of phenotypic traits and nitrogen and phosphorus stoichiometric characteristics of leaf of natural populations of Taxus wallichiana var. mairei[J]. J Plant Resour Environ, 2021, 30(1):27-35.DOI:10.3969/j.issn.1674-7895.2021.01.04.
[9]
MCCULLOH K A, SPERRY J S. Patterns in hydraulic architecture and their implications for transport efficiency[J]. Tree Physiol, 2005, 25(3):257-267.DOI:10.1093/treephys/25.3.257.
[10]
于秋香, 刘警, 李扬, 等. 核桃种质资源叶片表型性状的遗传多样性研究[J]. 农业科学与技术:英文版, 2021, 22(1):1-8.
YU Q X, LIU J, LI Y, et al. Genetic diversity of leaf phenotypic traits in walnut germplasm resources[J]. Agric Sci & Technol, 2021, 22(1):1-8.DOI:10.16175/j.cnki.1009-4229.2021.01.001.
[11]
仲磊, 张焕朝, 范俊俊, 等. 夏季淹水胁迫对北美枫香苗木叶色及光合荧光特性的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(2):69-76.
ZHONG L, ZHANG H C, FAN J J, et al. Effects of flooding stress on leaf color and photosynthetic fluorescence characteristics of Liquidambar styraciflua cutting seedlings in summer[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(2):69-76.DOI:10.12302/j.issn.1000-2006.201909045.
[12]
GUILHERME PEREIRA C, DES MARAIS D L. The genetic basis of plant functional traits and the evolution of plant-environment interactions[J]. Int J Plant Sci, 2020, 181(1):56-74.DOI:10.1086/706190.
[13]
WRIGHT I J, DONG N, MAIRE V, et al. Global climatic drivers of leaf size[J]. Science, 2017, 357(6354):917-921.DOI:10.1126/science.aal4760.
[14]
吴凤婵, 李安定, 蔡国俊, 等. 6种西番莲属(Passiflora)植物叶面积经验模型构建[J]. 果树学报, 2021, 38(9):1600-1610.
WU F C, LI A D, CAI G J, et al. Construction of empirical models for leaf area estimation in six Passiflora species[J]. J Fruit Sci, 2021, 38(9):1600-1610.DOI:10.13925/j.cnki.gsxb.20210018.
[15]
彭曦, 闫文德, 王光军, 等. 杉木叶形态特征与叶面积估算模型[J]. 生态学报, 2018, 38(10):3569-3580.
PENG X, YAN W D, WANG G J, et al. Leaf morphological characteristics and leaf area estimation model for Cunninghamia lanceolata[J]. Acta Ecol Sin, 2018, 38(10):3569-3580.DOI:10.5846/stxb201704130660.
[16]
杜尚嘉, 王鑫, 吴海霞, 等. 海南风吹楠成熟叶叶面积估算模型建立[J]. 热带林业, 2021, 49(4):17-21.
DU S J, WANG X, WU H X, et al. Developing models to estimate the area of mature leaves of Horsfieldia hainanensis[J]. Trop For, 2021, 49(4):17-21.DOI:10.3969/j.issn.1672-0938.2021.04.004.
[17]
巫娟, 胡姝珍, 茅思雨, 等. 基于叶片形态的毛竹单叶叶面积模型[J]. 林业科学, 2020, 56(8):47-54.
WU J, HU S Z, MAO S Y, et al. Single leaf area model of Phyllostachys edulis based on leaf morphology[J]. Sci Silvae Sin, 2020, 56(8):47-54.DOI:10.11707/j.1001-7488.20200806.
[18]
王进杰, 杨军, 胡姝珍, 等. 3种丛生竹叶面积预测模型研究[J]. 南方林业科学, 2020, 48(1):7-12.
WANG J J, YANG J, HU S Z, et al. Study on leaf area predicting model of three sympodial bamboo species[J]. South China For Sci, 2020, 48(1):7-12.DOI:10.16259/j.cnki.36-1342/s.2020.01.002.
[19]
谈丽华, 巫娟, 胡妹珍, 等. 基于叶形分类的淡竹叶面积预测模型研究[J]. 世界竹藤通讯, 2020, 18(1):6-10.
TAN L H, WU J, HU M Z, et al. Leaf area predicting model for Phyllostachys glauca based on leaf morphology classification[J]. World Bamboo Rattan, 2020, 18(1):6-10.DOI:CNKI:SUN:ZTTX.0.2020-01-004.
[20]
YU X J, SHI P J, SCHRADER J, et al. Nondestructive estimation of leaf area for 15 species of vines with different leaf shapes[J]. Am J Bot, 2020, 107(11):1481-1490.DOI:10.1002/ajb2.1560.
[21]
SCHRADER J, SHI P J, ROYER D L, et al. Leaf size estimation based on leaf length,width and shape[J]. Ann Bot, 2021, 128(4):395-406.DOI:10.1093/aob/mcab078.
[22]
CAI H Y, DI X Y, JIN G Z. Allometric models for leaf area and leaf mass predictions across different growing seasons of elm tree (Ulmus japonica)[J]. J For Res, 2017, 28(5):975-982.DOI:10.1007/s11676-017-0377-8.
[23]
张鹏, 杨颖, 奚如春, 等. 高州油茶种群叶片性状变异分析[J]. 林业与环境科学, 2018, 34(5):13-19.
ZHANG P, YANG Y, XI R C, et al. Leaf phenotypic variation in populations of Camellia gauchowensis[J]. For Environ Sci, 2018, 34(5):13-19.DOI: 10.3969/j.issn.1006-4427.2018.05.003.
[24]
YU K, REDDY G V P, SCHRADER J, et al. A nondestructive method of calculating the wing area of insects[J]. Ecology and Evolution, 2022, 12(4):e8792. DOI: 10.1002/ece3.8792.
[25]
TEOBALDELLI M, ROUPHAEL Y, FASCELLA G, et al. Developing an accurate and fast non-destructive single leaf area model for Loquat (Eriobotrya japonica Lindl) cultivars[J]. Plants, 2019, 8(230):1-12. DOI:10.3390/plants8070230.
[26]
DING X T, YU L Y, JIANG Y P, et al. Changes in leaf length, width, area, and photosynthesis of fruit cucumber in a greenhouse production system[J]. Hort Science, 2020, 55(7):1-5. DOI:10.21273/HORTSCI14637-19.
[27]
PEREIRA C G, MARAIS D L. Special issue: functional trait evolution: the genetic basis of plant functional traits and the evolution of plant-environment interactions[J]. International Journal of Plant Sciences, 2020, 181(1). DOI:10.1086/706190.
[28]
杨红云, 路艳, 孙爱珍, 等. 水稻叶片几何参数无损测量方法研究[J]. 江西农业大学学报, 2020, 42(2):407-418.
YANG H Y, LU Y, SUN A Z, et al. Non-destructive measurement of rice leaf geometric parameters[J]. Acta Agriculturae Universitatis Jiangxiensis, 2020, 42(2):407-418. DOI:CNKI:SUN:JXND.0.2020-02-024.
[29]
LI Y Q, ZOU D T, SHRESTHA N, et al. Spatiotemporal variation in leaf size and shape in response to climate[J]. Journal of Plant Ecology, 2020, 13(1):87-96. DOI:10.1093/jpe/rtz053.
[30]
SHANG J, JIANG B, ZHENG Y H, et al. Responses of leaf functional traits of Torreya fargesii to the altitudinal variation[J]. Agricultural Science & Technology, 2017, 18(11):2179-2184. DOI:10.16175/j.cnki.1009-4229.2017.11.037.
[31]
李理渊, 李俊, 同小娟, 等. 不同光环境下栓皮栎和刺槐叶片光合光响应模拟[J]. 应用生态学报, 2018, 29(7):2295-2306.
LI L Y, LI J, TONG X J, et al. Simulation on photosynthetic light-responses of leaves of Quercus variabilis and Robinia pseudoacacia under different light conditions[J]. Chinese Journal of Applied Ecology, 2018, 29(7):2295-2306. DOI:10.13287/j.1001-9332.201807.029.
[32]
WANG Z H, ZHENG R, YANG L L, et al. Elevation gradient distribution of indices of tree population in a montane forest: the role of leaf traits and the environment[J]. Forest Ecosystems, 2022, 9(1):124-130. DOI:10.1016/J.FECS.2022.100012.
[33]
HANG T, LU N, TAKAGAKI M, et al. Leaf area model based on thermal effectiveness and photosynthetically active radiation in lettuce grown in mini-plant factories under different light cycles[J]. Scientia Horticulturae, 2019:252. DOI: 10.1016/j.scienta.2019.03.057.
PDF(1940 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/