Effect of stand density on radial growth-climate relationship of Larix gmelinii

HAN Xinyu, GAO Lushuang, QIN Li, PANG Rongrong, LIU Mingqian, ZHU Yihong, TIAN Yiyu, ZHANG Jin

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (2) : 182-190.

PDF(2250 KB)
PDF(2250 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (2) : 182-190. DOI: 10.12302/j.issn.1000-2006.202209007

Effect of stand density on radial growth-climate relationship of Larix gmelinii

Author information +
History +

Abstract

【Objective】 To develop a sustainable management plan for Larix gmelinii, which is influenced by climate change, it is crucial to understand the dynamic relationship between radial growth and climate in forests with different tree densities.【Method】 Based on the stand density index, nine plots with three density levels (low, middle, high) were established in the central and northern Greater Khingan Mountains. Tree cores of L. gmelinii were collected during a field investigation. The Mann-Kendall test method was used to determine the turning point of temperature in the study area. To examine the radial growth trend of L. gmelinii, negative exponential function detrending and a linear function fitting were applied. Then, a Pearson correlation and sliding correlation were used to analyze whether the relationship between the radial growth and climate factors under each stand density remained stable after the temperature turning point.【Result】 The radial growth of L. gmelinii displayed trends of both enhancement and decline after the temperature turning point. The proportion of declining trees increased with increasing stand density. The growth of L. gmelinii was strongly inhibited when the stand density was high. Its average growth change rate reached -25% during 1988-1990, indicating a serious growth decline. Instead, the L. gmelinii trees in low density plots maintained a 54% growth enhancement ratio. Stand density may also influence the response of L. gmelinii growth to climate. Under a high stand density, the L. gmelinii growth of the decline group was positively correlated with the standardized precipitation evapotranspiration index in August (P<0.05) and negatively correlated with summer temperature (P<0.05), but under a low stand density, the growth of L. gmelinii was positively correlated with temperature. With the warming and drying trend in the study area, the relationship between tree growth and temperature shifted from positive to negative with increasing stand density.【Conclusion】 The proportion of declining trees increased with increasing stand density after the significant change of temperature. The impact of water limitation on growth was alleviated at a low stand density, while the trees in high density plots were more sensitive to climate factors. Reducing the stand density could mitigate the negative impacts of climate warming on the growth of L. gmelinii. Therefore, adjusting stand density is a necessary management operation to slow the declining trend of L. gmelinii.

Key words

Larix gmelinii / stand density / radial growth / climate factor

Cite this article

Download Citations
HAN Xinyu , GAO Lushuang , QIN Li , et al . Effect of stand density on radial growth-climate relationship of Larix gmelinii[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(2): 182-190 https://doi.org/10.12302/j.issn.1000-2006.202209007

References

[1]
ADLARD P G, KARIYAPPA G S, SRINIVASALU N V. Spacing at planting of short-rotation Eucalyptus in Karnataka[C]// Growth and water use of forest plantations. New York: Wiley, 1992,103-127.
[2]
CAI H Y, DI X Y, CHANG S X, et al. Stand density and species richness affect carbon storage and net primary productivity in early and late successional temperate forests differently[J]. Ecol Res, 2016, 31(4):525-533.DOI: 10.1007/s11284-016-1361-z.
[3]
GIZACHEW B, BRUNNER A. Density-growth relationships in thinned and unthinned Norway spruce and Scots pine stands in Norway[J]. Scand J For Res, 2011, 26(6):543-554.DOI: 10.1080/02827581.2011.611477.
[4]
GIUGGIOLA A, BUGMANN H, ZINGG A, et al. Reduction of stand density increases drought resistance in Xeric Scots pine forests[J]. For Ecol Manag, 2013, 310:827-835.DOI: 10.1016/j.foreco.2013.09.030.
[5]
ROUTA J, KELLOMÄKI S, STRANDMAN H. Effects of forest management on total biomass production and CO2 emissions from use of energy biomass of Norway spruce and Scots pine[J]. Bioenerg Res, 2012, 5(3):733-747.DOI: 10.1007/s12155-012-9183-5.
[6]
JIANG S S, CHEN X, SMETTEM K, et al. Climate and land use influences on changing spatiotemporal patterns of mountain vegetation cover in southwest China[J]. Ecol Indic, 2021, 121:107193.DOI: 10.1016/j.ecolind.2020.107193.
[7]
HELLUY M, PRÉVOSTO B, CAILLERET M, et al. Competition and water stress indices as predictors of Pinus halepensis Mill.radial growth under drought[J]. For Ecol Manag, 2020, 460:117877.DOI: 10.1016/j.foreco.2020.117877.
[8]
LIU H Y, PARK WILLIAMS A, ALLEN C D, et al. Rapid warming accelerates tree growth decline in semi-arid forests of Inner Asia[J]. Glob Chang Biol, 2013, 19(8):2500-2510.DOI: 10.1111/gcb.12217.
[9]
吴秀臣, 裴婷婷, 李小雁, 等. 树木生长对气候变化的响应研究进展[J]. 北京师范大学学报(自然科学版), 2016, 52(1):109-116.
WU X C, PEI T T, LI X Y, et al. Tree growth responding to climate changes[J]. J Beijing Norm Univ (Nat Sci), 2016, 52(1):109-116.DOI: 10.16360/j.cnki.jbnuns.2016.01.021.
[10]
李宗善, 陈维梁, 韦景树, 等. 北京东灵山辽东栎林树木生长对气候要素的响应特征[J]. 生态学报, 2021, 41(1):27-37.
LI Z S, CHEN W L, WEI J S, et al. Tree-ring growth responses of Liao-dong oak(Quercus wutaishanica)to climate in the Beijing Dongling Mountain of China[J]. Acta Ecol Sin, 2021, 41(1):27-37.DOI: 10.5846/stxb201910212210.
[11]
WU X, JIANG F, LI X, et al. Major features of decline of Pinus sylvestris var.mongolica plantation on sandy land[J]. Ying Yong Sheng Tai Xue Bao, 2004, 15(12):2221-2224.
[12]
ANDREWS C M, D’AMATO A W, FRAVER S, et al. Low stand density moderates growth declines during hot droughts in se-miarid forests[J]. J Appl Ecol, 2020, 57(6):1089-1102.DOI: 10.1111/1365-2664.13615.
[13]
STECKEL M, MOSER W K, DEL RÍO M, et al. Implications of reduced stand density on tree growth and drought susceptibility:a study of three species under varying climate[J]. Forests, 2020, 11(6):627.DOI: 10.3390/f11060627.
[14]
BEMBENEK M, KARASZEWSKI Z, KONDRACKI K, et al. Value of merchantable timber in Scots pine stands of different densities[J]. Drewno, 2014, 57(192):133-142.DOI: 10.12841/wood.1644-3985.S14.09.
[15]
SCHMITT A, TROUVÉ R, SEYNAVE I, et al. Decreasing stand density favors resistance,resilience,and recovery of Quercus petraea trees to a severe drought,particularly on dry sites[J]. Ann For Sci, 2020, 77(2):1-21.DOI: 10.1007/s13595-020-00959-9.
[16]
贺伟, 布仁仓, 熊在平, 等. 1961—2005年东北地区气温和降水变化趋势[J]. 生态学报, 2013, 33(2):519-531.
HE W, BU R C, XIONG Z P, et al. Characteristics of temperature and precipitation in northeastern China from 1961 to 2005[J]. Acta Ecol Sin, 2013, 33(2):519-531.DOI: 10.5846/stxb201111241799.
[17]
全先奎, 王传宽. 兴安落叶松光合特性对环境的适应及其影响因素[J]. 科学通报, 2016, 61(20):2273-2286.
QUAN X K, WANG C K. Responses and influencing factors of foliar photosynthetic characteristics of Larix gmelinii to changing environments[J]. Chin Sci Bull, 2016, 61(20):2273-2286.
[18]
全先奎, 王传宽. 兴安落叶松对环境变化的物候驯化和光合能力适应[J]. 生态学报, 2015, 35(13):4538-4546.
QUAN X K, WANG C K. Acclimation of leaf phenology and adaptation of photosynthetic capacity of Larix gmelinii to environmental changes[J]. Acta Ecol Sin, 2015, 35(13):4538-4546.DOI: 10.5846/stxb201404070661.
[19]
杨婧雯, 张秋良, 宋文琦, 等. 大兴安岭兴安落叶松和樟子松径向生长对气候变化的响应差异[J]. 应用生态学报, 2021, 32(10):3415-3427.
YANG J W, ZHANG Q L, SONG W Q, et al. Response differences of radial growth of Larix gmelinii and Pinus sylvestris var.mongolica to climate change in Daxing'an Mountains,Northeast China[J]. Chin J Appl Ecol, 2021, 32(10):3415-3427.DOI: 10.13287/j.1001-9332.202110.005.
[20]
刘丹, 杜春英, 于成龙, 等. 黑龙江省兴安落叶松和红松的生态地理分布变化[J]. 安徽农业科学, 2011, 39(16):9643-9645.
LIU D, DU C Y, YU C L, et al. Eco-geographical distribution change of Larix gmelinii and Pinus koraiensis in Heilongjiang Province[J]. J Anhui Agric Sci, 2011, 39(16):9643-9645.DOI: 10.13989/j.cnki.0517-6611.2011.16.227.
[21]
张朋磊, 刘滨辉. 气候变化对不同纬度兴安落叶松径向生长的影响[J]. 东北林业大学学报, 2015, 43(3):10-13,22.
ZHANG P L, LIU B H. Effeet of chinate change on Larix gmelinii growth in different latitudes[J]. J Northeast For Univ, 2015, 43(3):10-13,22.DOI: 10.13759/j.cnki.dlxb.20150120.017.
[22]
刘欣, 刘滨辉. 大兴安岭不同坡向兴安落叶松径向生长对气候变化的响应[J]. 东北林业大学学报, 2014, 42(12):13-17,21.
LIU X, LIU B H. Response of Larix gmelinii(Rupr.) Kuzen radial growth to climate for different slope direction in daxing'an mountain[J]. J Northeast For Univ, 2014, 42(12):13-17,21.DOI: 10.13759/j.cnki.dlxb.20141104.002.
[23]
常永兴, 陈振举, 张先亮, 等. 气候变暖下大兴安岭落叶松径向生长对温度的响应[J]. 植物生态学报, 2017, 41(3):279-289.
CHANG Y X, CHEN Z J, ZHANG X L, et al. Responses of radial growth to temperature in Larix gmelinii of the Da Hinggan Ling under climate warming[J]. Chin J Plant Ecol, 2017, 41(3):279-289.DOI: 10.17521/cjpe.2016.0222.
[24]
陈俊宇, 刘鸣谦, 杨晶, 等. 基于气候响应关系研究火干扰对兴安落叶松直径结构的影响[J]. 地球环境学报, 2020, 11(6):606-615.
CHEN J Y, LIU M Q, YANG J, et al. Relationship between diameter structure dynamics and climate factors of Larix gmelinii under fire disturbance[J]. J Earth Environ, 2020, 11(6):606-615.DOI: 10.7515/JEE192059.
[25]
齐光, 王庆礼, 王新闯, 等. 大兴安岭林区兴安落叶松人工林植被碳贮量[J]. 应用生态学报, 2011, 22(2):273-279.
QI G, WANG Q L, WANG X C, et al. Vegetation carbon storage in Larix gmelinii plantations in Great Xing'an Mountains[J]. Chin J Appl Ecol, 2011, 22(2):273-279.DOI: 10.13287/j.1001-9332.2011.0072.
[26]
魏亚伟, 周旺明, 周莉, 等. 兴安落叶松天然林碳储量及其碳库分配特征[J]. 生态学报, 2015, 35(1):189-195.
WEI Y W, ZHOU W M, ZHOU L, et al. Carbon storage and its distribution pattern in the natural Larix gmelinii forests on Daxing'an Mountains[J]. Acta Ecol Sin, 2015, 35(1):189-195.DOI: 10.5846/stxb201407271520.
[27]
梁媛. 大兴安岭兴安落叶松径向生长对气候变化响应[D]. 哈尔滨: 东北林业大学, 2014.
LIANG Y. The response of the growth of Larix gmelinii to the climate change in Great Khingan[D]. Harbin: Northeast Forestry University, 2014.
[28]
霍宏. 气候暖化对兴安落叶松光合和生长影响的研究[D]. 哈尔滨: 东北林业大学, 2007.
HUO H. The effects of climate warming on photosynthesis and growth of Larix gmelinii[D]. Harbin: Northeast Forestry University, 2007.
[29]
罗丹丹, 王传宽, 金鹰. 植物水分调节对策:等水与非等水行为[J]. 植物生态学报, 2017, 41(9):1020-1032.
LUO D D, WANG C K, JIN Y. Plant water-regulation strategies:isohydric versus anisohydric behavior[J]. Chin J Plant Ecol, 2017, 41(9):1020-1032.DOI: 10.17521/cjpe.2016.0366.
[30]
D’AMATO A W, BRADFORD J B, FRAVER S, et al. Effects of thinning on drought vulnerability and climate response in north temperate forest ecosystems[J]. Ecol Appl, 2013, 23(8):1735-1742.DOI: 10.1890/13-0677.1.
[31]
KERHOULAS L P, KOLB T E, KOCH G W. Tree size,stand density,and the source of water used across seasons by ponderosa pine in northern Arizona[J]. For Ecol Manag, 2013, 289:425-433.DOI: 10.1016/j.foreco.2012.10.036.
[32]
李伟光, 易雪, 侯美亭, 等. 基于标准化降水蒸散指数的中国干旱趋势研究[J]. 中国生态农业学报, 2012, 20(5):643-649.
LI W G, YI X, HOU M T, et al. Standardized precipitation evapotranspiration index shows drought trends in China[J]. Chin J Eco Agric, 2012, 20(5):643-649.
[33]
韩艳刚, 盖学瑞, 邱思玉, 等. 大兴安岭兴安落叶松径向生长对气候响应的时空变化[J]. 应用生态学报, 2021, 32(10):3397-3404.
HAN Y G, GAI X R, QIU S Y, et al. Spatial and temporal variations of the responses of radial growth of Larix gmelinii to climate in the Daxing'anling Mountains of northeast China[J]. Chin J Appl Ecol, 2021, 32(10):3397-3404.DOI: 10.13287/j.1001-9332.202110.021.
[34]
张楠, 郭雪梅, 张冬有. 兴安落叶松树轮宽度指数与归一化植被指数的关系研究[J]. 森林工程, 2022, 38(1):1-8.
ZHANG N, GUO X M, ZHANG D Y. A study on the relationship between tree ring width index and NDVI of Larix gmelinii[J]. For Eng, 2022, 38(1):1-8.DOI: 10.16270/j.cnki.slgc.2022.01.019.
[35]
张先亮, 崔明星, 马艳军, 等. 大兴安岭库都尔地区兴安落叶松年轮宽度年表及其与气候变化的关系[J]. 应用生态学报, 2010, 21(10):2501-2507.
ZHANG X L, CUI M X, MA Y J, et al. Larix gmelinii tree-ring width chronology and its responses to climate change in Kuduer,Great Xing'an Mountains[J]. Chin J Appl Ecol, 2010, 21(10):2501-2507.DOI: 10.13287/j.1001-9332.2010.0353.
[36]
毛沂新, 张慧东, 王睿照, 等. 辽东山区蒙古栎径向生长对林分密度和气候因子的响应[J]. 应用生态学报, 2021, 32(10):3477-3486.
MAO Y X, ZHANG H D, WANG R Z, et al. Responses of radial growth of Quercus mongolica to stand density and climatic factors in a mountainous area of eastern Liaoning Province,China[J]. Chin J Appl Ecol, 2021, 32(10):3477-3486.DOI: 10.13287/j.1001-9332.202110.008.
[37]
MAZZA G, CUTINI A, MANETTI M C. Influence of tree density on climate-growth relationships in a Pinus pinaster Ait.forest in the northern mountains of Sardinia (Italy)[J]. IForest, 2015, 8(4):456-463.DOI: 10.3832/ifor1190-007.
[38]
CAO J, LIU H Y, ZHAO B, et al. High forest stand density exacerbates growth decline of conifers driven by warming but not broad-leaved trees in temperate mixed forest in northeast Asia[J]. Sci Total Environ, 2021, 795:148875.DOI: 10.1016/j.scitotenv.2021.148875.
[39]
GEA-IZQUIERDO G, MARTIN-BENITO D, CHERUBINI P, et al. Climate-growth variability in Quercus ilex L.west Iberian open woodlands of different stand density[J]. Ann For Sci, 2009, 66(8):802p1-802p12.DOI: 10.1051/forest/2009080.
[40]
ZHANG X L, MANZANEDO R D, D’ORANGEVILLE L, et al. Snowmelt and early to mid-growing season water availability augment tree growth during rapid warming in southern Asian boreal forests[J]. Glob Chang Biol, 2019, 25(10):3462-3471.DOI: 10.1111/gcb.14749.
PDF(2250 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/