A review of remote sensing application in national forest inventory

DING Xiangyuan, CHEN Erxue, LI Zengyuan, ZHAO Lei, LIU Qingwang, XU Kunpeng

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (1) : 1-12.

PDF(1309 KB)
PDF(1309 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2023, Vol. 47 ›› Issue (1) : 1-12. DOI: 10.12302/j.issn.1000-2006.202209009

A review of remote sensing application in national forest inventory

Author information +
History +

Abstract

National (continuous) forest inventory (NFI/NCFI) is an important part of forest resources monitoring system, which can provide timely and effective scientific basis for formulating national forestry development strategies and adjusting forestry policies(follow-up called NFI). Remote sensing has played a vital role in promoting the progress of NFI technology. It has become an indispensable technical means to support the operation of NFI. In terms of using remote sensing data as auxiliary information in NFI to increase the accuracy and efficiency of population parameter estimation, scholars at home and abroad have carried out a large number of studies on estimation models and methods, which can be summarized into four categories: design-based inference method, design-based and model-assisted method, model-dependent method, design and model hybrid method. Focusing on these four categories of estimation models and methods, this research summarizes the current research status at home and abroad, analyzes the problems existing in domestic related research, and gives suggestions on the follow-up key research and development directions and contents, hoping to promote the comprehensive application of Space-Air-Earth multi-source observation data in China’s NFI business. In terms of design-based inference method, there is little difference between domestic and foreign; a large number of design-based and model-assisted method research has been carried out abroad and has been applied to NFI business, but there are few domestic related research, business application is only embodied in area ratio estimation. Few research has been carried out on the estimation of quantitative forest parameters using the design-based and model-assisted method. The application, demonstration and promotion of this method should be strengthened in the future. The model-dependent method is the most basic method used by remote sensing in forest resources survey and monitoring. Lots of research has been done on the application of model method in NFI abroad, and the uncertainty measurement method in the collaborative application of multi-source data has been studied in depth. Also there are many domestic studies on model-dependent methods, but the systematic research on how to scientifically evaluate the fitting effect of the model and how to measure the uncertainty of the model estimation results are still need, which should be the focus of follow-up research. For the monitoring of forest resources in the area that difficult to investigate, the advantage of the model-dependent method, which is most conducive to solve the problem of small area estimation, should be fully utilized, and remote sensing as auxiliary data should be used to achieve effective estimation of forest parameters at different scales through the model-dependent method. Three types of design and model hybrid methods have been developed abroad for the application of NFI. There is little research on the first type of design and model hybrid method in China. The research on the second type of design and model hybrid method is limited to estimate land area by the double regression sampling method. Few research has been carried out on the design and model hybrid method of quantitative parameters such as stock volume; however, the research on the third type of design and model hybrid method has not yet adopted the idea of “data assimilation” to carry out relevant application research. It is recommended to strengthen the in-depth research and application demonstration of these three types of mixed methods in domestic NFI in the future.

Key words

national forest inventory / remote sensing applications / statistical inference / design-based inference method / design-based and model-assisted method / model-dependent method / design and model hybrid method

Cite this article

Download Citations
DING Xiangyuan , CHEN Erxue , LI Zengyuan , et al . A review of remote sensing application in national forest inventory[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2023, 47(1): 1-12 https://doi.org/10.12302/j.issn.1000-2006.202209009

References

[1]
NASSET E. Area-based inventory in Norway-from innovation to an operational reality[C]// Forestry Applications of Airborne Laser Scanning. Dordrecht: Springer Netherlands, 2013:215-240.DOI: 10.1007/978-94-017-8663-8_11.
[2]
BREIDENBACH J, MCROBERTS R E, ASTRUP R. Empirical coverage of model-based variance estimators for remote sensing assisted estimation of stand-level timber volume[J]. Remote Sens Environ, 2016, 173:274-281.DOI: 10.1016/j.rse.2015.07.026.
Due to the availability of good and reasonably priced auxiliary data, the use of model-based regression-synthetic estimators for small area estimation is popular in operational settings. Examples are forest management inventories, where a linking model is used in combination with airborne laser scanning data to estimate stand-level forest parameters where no or too few observations are collected within the stand. This paper focuses on different approaches to estimating the variances of those estimates. We compared a variance estimator which is based on the estimation of superpopulation parameters with variance estimators which are based on predictions of finite population values. One of the latter variance estimators considered the spatial autocorrelation of the residuals whereas the other one did not. The estimators were applied using timber volume on stand level as the variable of interest and photogrammetric image matching data as auxiliary information. Norwegian National Forest Inventory (NFI) data were used for model calibration and independent data clustered within stands were used for validation. The empirical coverage proportion (ECP) of confidence intervals (CIs) of the variance estimators which are based on predictions of finite population values was considerably higher than the ECP of the CI of the variance estimator which is based on the estimation of superpopulation parameters. The ECP further increased when considering the spatial autocorrelation of the residuals. The study also explores the link between confidence intervals that are based on variance estimates as well as the well-known confidence and prediction intervals of regression models. 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license.
[3]
RAHLF J, HAUGLIN M, ASTRUP R, et al. Timber volume estimation based on airborne laser scanning:comparing the use of national forest inventory and forest management inventory data[J]. Ann For Sci, 2021, 78(2):1-14.DOI: 10.1007/s13595-021-01061-4.
[4]
肖兴威. 中国森林资源清查[M]. 北京: 中国林业出版社, 2005.
XIAO X W. National forest inventory of China[M]. Beijing: China Forestry Publishing House, 2005.
[5]
ZENG W S, TOMPPO E, HEALEY S P, et al. The national forest inventory in China:history-results-international context[J]. For Ecosyst, 2015, 2(1):23.DOI: 10.1186/s40663-015-0047-2.
[6]
唐小平, 翁国庆, 陈雪峰, 等. 森林资源规划设计调查技术规程:GB/T 26424—2010.[S]. 北京: 中国标准出版社, 2011.
[7]
张煜星, 闫宏伟, 黄国胜, 等. 森林资源连续清查技术规程:GB/T 38590—2020[S]. 北京: 中国标准出版社, 2020.
[8]
SAARELA S, SCHNELL S, TUOMINEN S, et al. Effects of positional errors in model-assisted and model-based estimation of growing stock volume[J]. Remote Sens Environ, 2016, 172:101-108.DOI: 10.1016/j.rse.2015.11.002.
[9]
STÅHL G, SAARELA S, SCHNELL S, et al. Use of models in large-area forest surveys:comparing model-assisted,model-based and hybrid estimation[J]. For Ecosyst, 2016, 3:5.DOI: 10.1186/s40663-016-0064-9.
[10]
KERSHAW J A, DUCEY M J, BEERS T W, et al. Sampling designs in forest inventories[C]//KERSHAW J A, DUCEY M J, BEERS T W, et al. Forest Mensuration. Hoboken: Wiley Online Library, 2016:305-360.DOI:10.1002/9781118902028.ch10.
[11]
GREGOIRE T G, VALENTINE H T. Sampling strategies for natural resources and the environment[M]. Boca Raton: Chapman and Hall/CRC, 2007.DOI: 10.1201/9780203498880.
[12]
MCROBERTS R E. Probability- and model-based approaches to inference for proportion forest using satellite imagery as ancillary data[J]. Remote Sens Environ, 2010, 114(5):1017-1025.DOI: 10.1016/j.rse.2009.12.013.
[13]
MCCONVILLE K S, MOISEN G G, FRESCINO T S. A tutorial on model-assisted estimation with application to forest inventory[J]. Forests, 2020, 11(2):244.DOI: 10.3390/f11020244.
[14]
ENEL T, NASSET E, GOBAKKEN T, et al. Assessing the accuracy of regional LiDAR-based biomass estimation using a simulation approach[J]. Remote Sens Environ, 2012, 123:579-592.DOI: 10.1016/j.rse.2012.04.017.
[15]
SAARELA S, GRAFSTRÖM A, STÅHL G, et al. Model-assisted estimation of growing stock volume using different combinations of LiDAR and Landsat data as auxiliary information[J]. Remote Sens Environ, 2015, 158:431-440.DOI: 10.1016/j.rse.2014.11.020.
[16]
BREIDT F J, OPSOMER J D. Model-assisted survey estimation with modern prediction techniques[J]. Statist Sci, 2017, 32(2):190-205.DOI: 10.1214/16-sts589.
[17]
MÁTERN B. Spatial variation[M]. New York: Springer Verlag, 1986.DOI: 10.1007/978-1-4615-7892-5.
[18]
李陶, 李明阳, 钱春花. 结合冠层密度的森林净初级生产力遥感估测[J]. 南京林业大学学报(自然科学版), 2021, 45(5):153-160.
LI T, LI M Y, QIAN C H. Combining crown density to estimate forest net primary productivity by using remote sensing data[J]. J Nanjing For Univ (Nat Sci Edi), 2021, 45(5): 153-160.DOI: 10.12302/j.issn.1000-2006.202008007.
[19]
ROYALL R M. On finite population sampling theory under certain linear regression models[J]. Biometrika, 1970, 57(2):377-387.DOI: 10.1093/biomet/57.2.377.
[20]
RENNOLLS K. The use of superpopulation-prediction methods in survey analysis,with application to the British National Census of Woodlands and Trees[C]//LUND H D. In place resource inventories:principles and practices. Maryland: Society of American Foresters, 1981: 395-401.
[21]
GREGOIRE T G. Design-based and model-based inference in survey sampling:appreciating the difference[J]. Can J For Res, 1998, 28(10):1429-1447.DOI: 10.1139/x98-166.
[22]
王甜, 王雪峰, 刘嘉政. 基于RFE_RF算法的幼龄沉香叶片含水率预估模型[J]. 南京林业大学学报(自然科学版), 2022, 46(4):177-184.
WANG T, WANG X F, LIU J Z. The prediction model of moisture content of young Aquilaria sinensis leaves based on RFE_RF algorithm[J]. J Nanjing For Univ (Nat Sci Edi), 2022, 46(4): 177-184.DOI: 10.12302/j.issn.1000-2006.202010043.
[23]
MANDALLAZ D. Sampling techniques for forest inventories[M]. Boca Raton FL: Chapman & Hall/CRC, 2008.
[24]
GRAUBARDAND B I, KORN E L. Inference for superpopulation parameters using sample surveys[J]. Statist Sci, 2002, 17(1):73-96.DOI: 10.1214/ss/1023798999.
[25]
MCROBERTS R E, WESTFALL J A. Effects of uncertainty in model predictions of individual tree volume on large area volume estimates[J]. For Sci, 2014, 60(1):34-42.DOI: 10.5849/forsci.12-141.
[26]
SÄRNDAL C E, SWENSSON B, WRETMAN J. Model assisted survey sampling[M]. New York: Springer, 1992.
[27]
STÅHL G, HOLM S, GREGOIRE T G, et al. Model-based inference for biomass estimation in a LiDAR sample survey in Hedmark County,Norway[J]. Can J For Res, 2011, 41(1):96-107.DOI: 10.1139/x10-161.
[28]
CORONA P, FATTORINI L, FRANCESCHI S, et al. Estimation of standing wood volume in forest compartments by exploiting airborne laser scanning information:model-based,design-based,and hybrid perspectives[J]. Can J For Res, 2014, 44(11):1303-1311.DOI: 10.1139/cjfr-2014-0203.
[29]
CAJANUS W. A method for ocular estimation of the growing stock of forests[J]. Tapio, 1913, 6:77-79.
[30]
NEYMAN J. On the two different aspects of the representative method:the method of stratified sampling and the method of purposive selection[J]. J Royal Stat Soc, 1934, 97(4):558-606.DOI: 10.1111/j.2397-2335.1934.tb04184.x.
[31]
LISTER A J, ANDERSEN H, FRESCINO T, et al. Use of remote sensing data to improve the efficiency of national forest inventories:a case study from the United States national forest inventory[J]. Forests, 2020, 11(12):1364.DOI: 10.3390/f11121364.
[32]
MCROBERTS R E, TOMPPO E O. Remote sensing support for national forest inventories[J]. Remote Sens Environ, 2007, 110(4):412-419.DOI: 10.1016/j.rse.2006.09.034.
[33]
COCHRAN W G. Sampling techniques[M]. 3rdEd. New York: John Wiley & Sons,1977.
[34]
MCROBERTS R E, GOBAKKEN T, NASSET E. Post-stratified estimation of forest area and growing stock volume using lidar-based stratifications[J]. Remote Sens Environ, 2012, 125:157-166.DOI: 10.1016/j.rse.2012.07.002.
[35]
ALLEN B C. The sampling design used in the forest survey of the northeast[J]. J For, 1952, 50(4):290-293.
[36]
LAWRENCE P R, WALKER B B. Methods and results of forest assessment using random sampling units in photo-interpreted strata[J]. Aust For, 1954, 18(2):107-127.DOI: 10.1080/00049158.1954.10675319.
[37]
POSO S, HÄME T, PAANANEN R. A method for estimating the stand characteristics of a forest compartment using satellite imagery[J]. Silva Fenn, 1984, 18(3):261-296.DOI: 10.14214/sf.a15398.
[38]
TOMPPO E, GSCHWANTNER T, LAWRENCE M, et al. National Forest Inventories:pathways for common reporting[M]. New York: Springer, 2010.
[39]
HANSEN M H, WENDT D G. Using classified Landsat Thematic Mapper data for stratification in a statewide forest inventory[C]//MCROBERTS R E,REAMS G A,VAN DEUSEN P C. Proceedings of the First Annual Forest Inventory and Analysis SymPosium. San Antonio: Department of Agriculture,Forest Service,North Central Research Station Available, 2012:20-27.
[40]
KAMWI J M, KÄTSCH C. Using high-resolution satellite imagery and double sampling as a cost-effective means of collecting forest inventory data: the case of Hans Kanyinga Community Forest,Namibia[J]. South For a J For Sci, 2009, 71(1):49-58.DOI: 10.2989/sf.2009.71.1.7.744.
[41]
DEO SINGH K. Remote sensing applications in forest inventory[C]//Capacity building for the planning,assessment and systematic observations of forests. Berlin, Heidelberg:Springer, 2013:115-130.
[42]
KANGAS A, ASTRUP R, BREIDENBACH J, et al. Remote sensing and forest inventories in Nordic countries-roadmap for the future[J]. Scand J For Res, 2018, 33(4):397-412.DOI: 10.1080/02827581.2017.1416666.
[43]
蒲莹, 张煜星, 曾伟生, 等. 森林资源清查向森林生态系统监测转型技术[J]. 科技创新与品牌, 2021(5):76-79.
PU Y, ZHANG Y X, ZENG W S, et al. Transformation technology from forest resources inventory to forest ecosystem monitoring[J]. Sci Tech Innov Brands, 2021(5):76-79.DOI: 10.3969/j.issn.1673-940X.2021.05.025.
[44]
罗仙仙, 亢新刚, 杨华. 我国森林资源综合监测抽样理论研究综述[J]. 西北林学院学报, 2008, 23(6):187-193.
LUO X X, KANG X G, YANG H. A review on the sampling theory of forest resources comprehensive monitoring[J]. J Northwest For Univ, 2008, 23(6):187-193.
[45]
史京京, 雷渊才, 赵天忠. 森林资源抽样调查技术方法研究进展[J]. 林业科学研究, 2009, 22(1):101-108.
SHI J J, LEI Y C, ZHAO T Z. Progress in sampling technology and methodology in forest inventory[J]. For Res, 2009, 22(1):101-108.DOI: 10.3321/j.issn:1001-1498.2009.01.018.
[46]
张会儒, 雷相东, 李凤日. 中国森林经理学研究进展与展望[J]. 林业科学, 2020, 56(9):130-142.
ZHANG H R, LEI X D, LI F R. Research progress and prospects of forest management science in China[J]. Sci Silvae Sin, 2020, 56(9):130-142.DOI: 10.11707/j.1001-7488.20200915.
[47]
李芝喜, 曹宁湘, 王维勤, 等. 利用遥感技术多阶不等概抽样清查森林资源[J]. 北京林学院学报, 1985, 7(2):70-75.
LI Z X, CAO N X, WANG W Q, et al. Using remote sensing technology to check forest resources by multi-order unequal sampling[J]. J Beijing For Univ, 1985, 7(2):70-75.
[48]
欧润贵. 对航天遥感资料应用于以县为总体的森林资源连续清查的建议[J]. 林业资源管理, 1991(1):48-50.
OU R G. Suggestions on the application of space remote sensing data to continuous inventory of forest resources in counties as a whole[J]. For Resour Manag, 1991(1):48-50.DOI: 10.13466/j.cnki.lyzygl.1991.01.018.
[49]
曾伟生. 遥感技术在森林资源清查中的应用问题探讨[J]. 中南林业调查规划, 2004, 23(1):47-49.
ZENG W S. Discussion on application of remote sensing in forest inventories[J]. Contral South For Invent Plan, 2004, 23(1):47-49.DOI: 10.3969/j.issn.1003-6075.2004.01.014.
[50]
林辉, 熊育久, 孙华, 等. 湖南省森林资源连续清查遥感应用研究[J]. 中南林业科技大学学报, 2007, 27(4):33-38.
LIN H, XIONG Y J, SUN H, et al. Application of remote sensing to continuous forest inventory research in Hunan Province[J]. J Central South Univ For & Technol, 2007, 27(4):33-38.DOI: 10.3969/j.issn.1673-923X.2007.04.006.
[51]
郑冬梅, 智长贵, 黄国胜, 等. 遥感大样地点面判读方法在森林资源宏观监测中的应用分析[J]. 林业资源管理, 2017(6):137-142,148.
ZHENG D M, ZHI C G, HUANG G S, et al. Analysis of forest resources monitoring by zoning interpretation and point interpretation of remote sensing large plot[J]. For Resour Manag, 2017(6):137-142, 148.DOI: 10.13466/j.cnki.lyzygl.2017.06.024.
[52]
程志楚, 夏朝宗, 王海滨, 等. 大样地调查方案在森林资源调查中的可行性分析[J]. 河北农业大学学报, 2015, 38(3):64-68.
CHENG Z C, XIA C Z, WANG H B, et al. Feasibility analysis on a new scheme based on large plot in forest resources survey[J]. J Agric Univ Hebei, 2015, 38(3):64-68.DOI: 10.13320/j.cnki.jauh.2015.0061.
[53]
王雪军, 张煜星, 黄国胜, 等. 全国森林面积和森林蓄积年度出数方法探讨[J]. 江西农业大学学报, 2016, 38(1):9-18.
WANG X J, ZHANG Y X, HUANG G S, et al. Discussion on methods for annual national producing estimates of forest area and forest stock in China[J]. Acta Agric Univ Jiangxiensis, 2016, 38(1):9-18.DOI: 10.13836/j.jjau.2016002.
[54]
SÄRNDAL C E. The calibration approach in survey theory and practice[J]. Surv Methodol, 2007, 33(2):99-119.
[55]
BREIDT F J, CLAESKENS G, OPSOMER J D. Model-assisted estimation for complex surveys using penalised splines[J]. Biometrika, 2005, 92(4):831-846.DOI: 10.1093/biomet/92.4.831.
[56]
OPSOMER J D, BREIDT F J, MOISEN G G, et al. Model-assisted estimation of forest resources with generalized additive models[J]. J Am Stat Assoc, 2007, 102(478):400-409.DOI: 10.1198/016214506000001491.
[57]
BOUDREAU J, NELSON R F, MARGOLIS H A, et al. Regional aboveground forest biomass using airborne and spaceborne LiDAR in Québec[J]. Remote Sens Environ, 2008, 112(10):3876-3890.DOI: 10.1016/j.rse.2008.06.003.
[58]
ANDERSEN H E, BARRETT T, WINTERBERGER K, et al. Estimating forest biomass on the western lowlands of the Kenai Peninsula of Alaska using airborne LiDAR and field plot data in a model-assisted sampling design[C]// Proceedings of the IUFRO Division 4 Conference:“Extending Forest Inventory and Monitoring over Space and Time”, 2009:19-22.
[59]
NÆSSET E, GOBAKKEN T, SOLBERG S, et al. Model-assisted regional forest biomass estimation using LiDAR and InSAR as auxiliary data:a case study from a boreal forest area[J]. Remote Sens Environ, 2011, 115(12):3599-3614.DOI: 10.1016/j.rse.2011.08.021.
[60]
GREGOIRE T G, STÅHL G, NASSET E, et al. Model-assisted estimation of biomass in a LiDAR sample survey in Hedmark County,Norway[J]. Can J For Res, 2011, 41(1):83-95.DOI: 10.1139/x10-195.
[61]
ENEL T, NASSET E, GOBAKKEN T, et al. A simulation approach for accuracy assessment of two-phase post-stratified estimation in large-area LiDAR biomass surveys[J]. Remote Sens Environ, 2013, 133:210-224.DOI: 10.1016/j.rse.2013.02.002.
[62]
GREGOIRE T G, NÆSSET E, MCROBERTS R E, et al. Statistical rigor in LiDAR-assisted estimation of aboveground forest biomass[J]. Remote Sens Environ, 2016, 173:98-108.DOI: 10.1016/j.rse.2015.11.012.
[63]
STEPHENS P R, KIMBERLEY M O, BEETS P N, et al. Airborne scanning LiDAR in a double sampling forest carbon inventory[J]. Remote Sens Environ, 2012, 117:348-357.DOI: 10.1016/j.rse.2011.10.009.
[64]
STRUNK J L, REUTEBUCH S E, ANDERSEN H E, et al. Model-assisted forest yield estimation with light detection and ranging[J]. West J Appl For, 2012, 27(2):53-59.DOI: 10.5849/wjaf.10-043.
[65]
NELSON R, GOBAKKEN T, NÆSSET E, et al. Lidar sampling: using an airborne profiler to estimate forest biomass in Hedmark County,Norway[J]. Remote Sens Environ, 2012, 123:563-578.DOI: 10.1016/j.rse.2011.10.036.
[66]
GOBAKKEN T, NÆSSET E, NELSON R, et al. Estimating biomass in Hedmark County,Norway using national forest inventory field plots and airborne laser scanning[J]. Remote Sens Environ, 2012, 123:443-456.DOI: 10.1016/j.rse.2012.01.025.
[67]
NÆSSET E, GOBAKKEN T, BOLLANDSÅS O M, et al. Comparison of precision of biomass estimates in regional field sample surveys and airborne LiDAR-assisted surveys in Hedmark County,Norway[J]. Remote Sens Environ, 2013, 130:108-120.DOI: 10.1016/j.rse.2012.11.010.
[68]
MASSEY A, MANDALLAZ D, LANZ A. Integrating remote sensing and past inventory data under the new annual design of the Swiss National Forest Inventory using three-phase design-based regression estimation[J]. Can J For Res, 2014, 44(10):1177-1186.DOI:10.1139/CJFR-2014-0152.
[69]
CHIRICI G, MCROBERTS R E, FATTORINI L, et al. Comparing echo-based and canopy height model-based metrics for enhancing estimation of forest aboveground biomass in a model-assisted framework[J]. Remote Sens Environ, 2016, 174:1-9.DOI: 10.1016/j.rse.2015.11.010.
[70]
唐守正. 关于两相抽样面积蓄积统计的原则[J]. 林业资源管理, 1996(4):18-22.
TANG S Z. On the principle of accumulation statistics of two-phase sampling area[J]. For Resour Manag, 1996(4):18-22.
[71]
宋新民, 李金良. 抽样调查技术[M]. 2版. 北京: 中国林业出版社, 2007.
SONG X M, LI J L. Sampling survey techniques[M]. 2nd ed. Beijing: China Forestry Publishing House, 2007.
[72]
葛宏立, 周国模, 张国江, 等. 遥感、地面三相抽样及其在森林资源年度监测面积估计中的应用[J]. 林业科学, 2007, 43(6):77-82.
GE H L, ZHOU G M, ZHANG G J, et al. RS-land three-phase sampling technique and its application to area estimation in annual forest inventory[J]. Sci Silvae Sin, 2007, 43(6):77-82.DOI: 10.3321/j.issn:1001-7488.2007.06.014.
[73]
张宗秀, 高天雷, 张文. 双重二阶抽样提高森林资源抽样精度的研究[J]. 四川林业科技, 2013, 34(5):8-12.
ZHANG Z X, GAO T L, ZHANG W. Study on improving the sampling accuracy of forest resources by double sampling[J]. J Sichuan For Sci Technol, 2013, 34(5):8-12.DOI: 10.16779/j.cnki.1003-5508.2013.05.002.
[74]
BACCINI A, LAPORTE N, GOETZ S J, et al. A first map of tropical Africa’s above-ground biomass derived from satellite imagery[J]. Environ Res Lett, 2008, 3(4):045011.DOI: 10.1088/1748-9326/3/4/045011.
[75]
ARMSTON J D, DENHAM R J, DANAHER T J, et al. Prediction and validation of foliage projective cover from Landsat-5 TM and Landsat-7 ETM+ imagery[J]. J App Ren Sen, 2009, 3:33540.DOI: 10.1117/1.3216031.
[76]
ASNER G P, POWELL G V N, MASCARO J, et al. High-resolution forest carbon stocks and emissions in the Amazon[J]. Proc Natl Acad Sci USA, 2010, 107(38):16738-16742.DOI: 10.1073/pnas.1004875107.
Efforts to mitigate climate change through the Reduced Emissions from Deforestation and Degradation (REDD) depend on mapping and monitoring of tropical forest carbon stocks and emissions over large geographic areas. With a new integrated use of satellite imaging, airborne light detection and ranging, and field plots, we mapped aboveground carbon stocks and emissions at 0.1-ha resolution over 4.3 million ha of the Peruvian Amazon, an area twice that of all forests in Costa Rica, to reveal the determinants of forest carbon density and to demonstrate the feasibility of mapping carbon emissions for REDD. We discovered previously unknown variation in carbon storage at multiple scales based on geologic substrate and forest type. From 1999 to 2009, emissions from land use totaled 1.1% of the standing carbon throughout the region. Forest degradation, such as from selective logging, increased regional carbon emissions by 47% over deforestation alone, and secondary regrowth provided an 18% offset against total gross emissions. Very high-resolution monitoring reduces uncertainty in carbon emissions for REDD programs while uncovering fundamental environmental controls on forest carbon storage and their interactions with land-use change.
[77]
HELMER E H, RUZYCKI T S, WUNDERLE J M J, et al. Mapping tropical dry forest height,foliage height profiles and disturbance type and age with a time series of cloud-cleared Landsat and ALI image mosaics to characterize avian habitat[J]. Remote Sens Environ, 2010, 114(11):2457-2473.DOI: 10.1016/j.rse.2010.05.021.
[78]
STRUNK J, TEMESGEN H, ANDERSEN H E, et al. Effects of lidar pulse density and sample size on a model-assisted approach to estimate forest inventory variables[J]. Can J Remote Sens, 2012, 38(5):644-654.DOI: 10.5589/m12-052.
[79]
ZHANG R, ZHOU X H, OUYANG Z T, et al. Estimating aboveground biomass in subtropical forests of China by integrating multisource remote sensing and ground data[J]. Remote Sens Environ, 2019, 232:111341.DOI: 10.1016/j.rse.2019.111341.
[80]
CHIRICI G, GIANNETTI F, MCROBERTS R E, et al. Wall-to-wall spatial prediction of growing stock volume based on Italian National Forest Inventory plots and remotely sensed data[J]. Int J Appl Earth Obs Geoinformation, 2020, 84:101959.DOI: 10.1016/j.jag.2019.101959.
[81]
MAGNUSSEN S, NÆSSET E, GOBAKKEN T. LiDAR-supported estimation of change in forest biomass with time-invariant regression models[J]. Can J For Res, 2015, 45(11):1514-1523.DOI: 10.1139/cjfr-2015-0084.
[82]
GULDIN R W. A systematic review of small domain estimation research in forestry during the twenty-first century from outside the United States[J]. Front For Glob Change, 2021, 4:695929.DOI: 10.3389/ffgc.2021.695929.
[83]
AKAIKE H. A new look at the statistical model identification[J]. IEEE Trans Autom Control, 1974, 19(6):716-723.DOI: 10.1109/TAC.1974.1100705.
[84]
SITTER R R. Variance estimation for the regression estimator in two-phase sampling[J]. J Am Stat Assoc, 1997, 92(438):780-787.DOI: 10.1080/01621459.1997.10474031.
[85]
SAARELA S, HOLM S, HEALEY S, et al. Generalized hierarchical model-based estimation for aboveground biomass assessment using GEDI and landsat data[J]. Remote Sens, 2018, 10(11): 1832.DOI: 10.3390/rs10111832.
[86]
HANSEN M H, MADOW W G, TEPPING B J. An evaluation of model-dependent and probability-sampling inferences in sample surveys[J]. J Am Stat Assoc, 1983, 78(384):776-793.DOI: 10.1080/01621459.1983.10477018.
[87]
VALLIANT R. Nonlinear prediction theory and the estimation of proportions in a finite population[J]. J Am Stat Assoc, 1985, 80(391):631-641.DOI: 10.1080/01621459.1985.10478163.
[88]
VALLIANT R, DORFMAN A H, ROYALL R M. Finite population sampling and inference:a prediction approach[M]. Chichester:Wiley, 2000.
[89]
MCROBERTS R E. A model-based approach to estimating forest area[J]. Remote Sens Environ, 2006, 103(1):56-66.DOI: 10.1016/j.rse.2006.03.005.
[90]
CHEN Q, VAGLIO L G, VALENTINI R. Uncertainty of remotely sensed aboveground biomass over an African tropical forest:propagating errors from trees to plots to pixels[J]. Remote Sens Environ, 2015, 160:134-143.DOI: 10.1016/j.rse.2015.01.009.
[91]
CHEN Q, MCROBERTS R E, WANG C W, et al. Forest aboveground biomass mapping and estimation across multiple spatial scales using model-based inference[J]. Remote Sens Environ, 2016, 184:350-360.DOI: 10.1016/j.rse.2016.07.023.
[92]
LEFSKY M A, COHEN W B, SPIES T A. An evaluation of alternate remote sensing products for forest inventory,monitoring,and mapping of Douglas-fir forests in western Oregon[J]. Can J For Res, 2001, 31(1):78-87.DOI:10.1139/cjfr-31-1-78.
[93]
HYDE P, NELSON R, KIMES D, et al. Exploring LiDAR-RaDAR synergy: predicting aboveground biomass in a southwestern ponderosa pine forest using LiDAR,SAR and InSAR[J]. Remote Sens Environ, 2007, 106(1):28-38.DOI: 10.1016/j.rse.2006.07.017.
[94]
GONZALEZ P, ASNER G P, BATTLES J J, et al. Forest carbon densities and uncertainties from LiDAR,QuickBird,and field measurements in California[J]. Remote Sens Environ, 2010, 114(7):1561-1575.DOI: 10.1016/j.rse.2010.02.011.
[95]
SIMARD M, PINTO N, FISHER J B, et al. Mapping forest canopy height globally with spaceborne Lidar[J]. J Geophys Res Biogeosci, 2011, 116(G4):G04021.DOI: 10.1029/2011JG001708.
[96]
POPESCU S C, ZHOU T, NELSON R, et al. Photon counting LiDAR:an adaptive ground and canopy height retrieval algorithm for ICESat-2 data[J]. Remote Sens Environ, 2018, 208:154-170.DOI: 10.1016/j.rse.2018.02.019.
[97]
DUBAYAH R, BLAIR J B, GOETZ S, et al. The global ecosystem dynamics investigation:high-resolution laser ranging of the Earth’s forests and topography[J]. Sci Remote Sens, 2020, 1:100002.DOI: 10.1016/j.srs.2020.100002.
[98]
POTAPOV P, LI X Y, HERNANDEZ-SERNA A, et al. Mapping global forest canopy height through integration of GEDI and Landsat data[J]. Remote Sens Environ, 2021, 253:112165.DOI: 10.1016/j.rse.2020.112165.
[99]
SAARELA S, HOLM S, GRAFSTRÖM A, et al. Hierarchical model-based inference for forest inventory utilizing three sources of information[J]. Ann For Sci, 2016, 73(4):895-910.DOI: 10.1007/s13595-016-0590-1.
[100]
PULITI S, ENE L T, GOBAKKEN T, et al. Use of partial-coverage UAV data in sampling for large scale forest inventories[J]. Remote Sens Environ, 2017, 194:115-126.DOI: 10.1016/j.rse.2017.03.019.
[101]
PULITI S, SAARELA S, GOBAKKEN T, et al. Combining UAV and Sentinel-2 auxiliary data for forest growing stock volume estimation through hierarchical model-based inference[J]. Remote Sens Environ, 2018, 204:485-497.DOI: 10.1016/j.rse.2017.10.007.
[102]
SAARELA S, WÄSTLUND A, HOLMSTRÖM E, et al. Mapping aboveground biomass and its prediction uncertainty using LiDAR and field data,accounting for tree-level allometric and LiDAR model errors[J]. For Ecosyst, 2020, 7:43.DOI: 10.1186/s40663-020-00245-0.
[103]
ESTEBAN J, MCROBERTS R, FERNÁNDEZ-LANDA A, et al. Estimating forest volume and biomass and their changes using random forests and remotely sensed data[J]. Remote Sens, 2019, 11(16):1944.DOI: 10.3390/rs11161944.
[104]
SANDOVAL S, BUSTAMANTE-ORTEGA R. Estimation of uncertainty in airborne LiDAR inventories using approaches based on bootstrapping-pairs methods[J]. Forests, 2020, 11(12):1305.DOI: 10.3390/f11121305.
[105]
李增元, 赵磊, 李堃, 等. 合成孔径雷达森林资源监测技术研究综述[J]. 南京信息工程大学学报(自然科学版), 2020, 12(2):150-158.
LI Z Y, ZHAO L, LI K, et al. A survey of developments on forest resources monitoring technology of synthetic aperture radar[J]. J Nanjing Univ Inf Sci & Technol (Nat Sci Ed), 2020, 12(2):150-158.DOI: 10.13878/j.cnki.jnuist.2020.02.002.
[106]
庞勇, 李增元, 陈博伟, 等. 星载激光雷达森林探测进展及趋势[J]. 上海航天, 2019, 36(3):20-28.
PANG Y, LI Z Y, CHEN B W, et al. Status and development of spaceborne lidar applications in forestry[J]. Aerosp Shanghai, 2019, 36(3):20-28.DOI: 10.19328/j.cnki.1006-1630.2019.03.003.
[107]
黄华国. 林业定量遥感研究进展和展望[J]. 北京林业大学学报, 2019, 41(12):1-14.
HUANG H G. Progress and perspective of quantitative remote sensing of forestry[J]. J Beijing For Univ, 2019, 41(12):1-14.DOI: 10.12171/j.1000-1522.20190326.
[108]
张王菲, 陈尔学, 李增元, 等. 干涉、极化干涉SAR技术森林高度估测算法研究进展[J]. 遥感技术与应用, 2017, 32(6):983-997.
ZHANG W F, CHEN E X, LI Z Y, et al. Development of forest height estimation using InSAR/PolInSAR technology[J]. Remote Sens Technol Appl, 2017, 32(6):983-997.DOI: 10.11873/j.issn.1004-0323.2017.6.0983.
[109]
张煜星, 王雪军, 黄国胜, 等. 森林面积多阶遥感监测方法[J]. 林业科学, 2017, 53(7):94-104.
ZHANG Y X, WANG X J, HUANG G S, et al. Forest area remote sensing monitoring using the multi-level sampling interpretation approach[J]. Sci Silvae Sin, 2017, 53(7):94-104.DOI: 10.11707/j.1001-7488.20170710.
[110]
ZHAO J P, ZHAO L, CHEN E, et al. An improved generalized hierarchical estimation framework with geo statistics for mapping forest parameters and its uncertainty:a case study of forest canopy height[J]. Remote Sens, 2022, 14(3):568.DOI:10.3390/rs14030568.
[111]
ANDERSENH E, STRUNK J, TEMESGEN H. Using airborne light detection and ranging as a sampling tool for estimating forest biomass resources in the upper Tanana valley of interior Alaska[J]. West J Appl for, 2011, 26(4):157-164.DOI: 10.1093/wjaf/26.4.157.
[112]
HENRIK J P, KENNETH O, JOHAN H. Two-phase forest inventory using very-high-resolution laser scanning[J]. Remote Sens Environ, 2022, 271:112909.DOI:10.1016/j.rse.2022.112909.
[113]
MAGNUSSEN S, NÆSSET E, GOBAKKEN T. An estimator of variance for two-stage ratio regression estimators[J]. For Sci, 2014, 60(4):663-676.DOI: 10.5849/forsci.12-163.
[114]
HEALEY S P, PATTERSON P L, SAATCHI S, et al. A sample design for globally consistent biomass estimation using lidar data from the geoscience laser altimeter system (GLAS)[J]. Carbon Balance Manag, 2012, 7(1):10.DOI: 10.1186/1750-0680-7-10.
[115]
MARGOLIS H A, NELSON R F, MONTESANO P M, et al. Combining satellite lidar,airborne lidar,and ground plots to estimate the amount and distribution of aboveground biomass in the boreal forest of north America[J]. Can J For Res, 2015, 45(7):838-855.DOI: 10.1139/cjfr-2015-0006.
[116]
CONDÉS S, MCROBERTS R E. Updating national forest inventory estimates of growing stock volume using hybrid inference[J]. For Ecol Manag, 2017, 400:48-57.DOI: 10.1016/j.foreco.2017.04.046.
[117]
鲁赛尼·阿特马维扎扎, 劳可遒. 用航空照片双重抽样进行森林资源清查[J]. 中南林业调查规划, 1982, 1(1):53-55,43.
LUSAINI A, LAO K Q. Inventory of forest resources by double sampling of aerial photographs[J]. Central South For Investory Plan, 1982, 1(1):53-55,43.
[118]
陈振雄, 熊智平, 曾伟生, 等. 基于大样地双重抽样方法的广东省森林资源监测研究[J]. 中南林业调查规划, 2014, 33(3):28-33.
CHEN Z X, XIONG Z P, ZENG W S, et al. Forest resources monitoring based on double sampling with large plot in Guangdong[J]. Central South For Invent Plan, 2014, 33(3):28-33.DOI: 10.16166/j.cnki.cn43-1095.2014.03.024.
[119]
曾伟生, 夏锐. 全国森林资源调查年度出数统计方法探讨[J]. 林业资源管理, 2021(2):29-35.
ZENG W S, XIA R. Discussion on methodology for generating annual estimates in national forest inventory[J]. For Resour Manag, 2021(2):29-35.DOI: 10.13466/j.cnki.lyzygl.2021.02.005.
[120]
曹林, 周凯, 申鑫, 等. 智慧林业发展现状与展望[J]. 南京林业大学学报(自然科学版), 2022, 46(6):83-95.
CAO L, ZHOU K, SHEN X, et al. The status and prospects of smart forestry[J]. J Nanjing For Univ (Nat Sci Edi), 2022, 46(6): 83-95.DOI: 10.12302/j.issn.1000-2006.202209052.
[121]
曾伟生. 森林资源调查监测中的数据耦合方法研究[J]. 林业资源管理, 2022(2):61-66.
ZENG W S. A study on method of data coupling in forest inventory and monitoring[J]. For Resour Manag, 2022(2):61-66.DOI: 10.13466/j.cnki.lyzygl.2022.02.009.
PDF(1309 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/