Ecological restoration technologies for lake wetlands for carbon peaking and neutrality

LI Wei, LI Jiping, ZHANG Yinlong, LI Pingping, HAN Jiangang

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (6) : 157-166.

PDF(13026 KB)
PDF(13026 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (6) : 157-166. DOI: 10.12302/j.issn.1000-2006.202209031

Ecological restoration technologies for lake wetlands for carbon peaking and neutrality

Author information +
History +

Abstract

Lake wetlands are the important part of wetlands in China, which plays an important role in reducing carbon emissions and mitigating global climate warming. However, the degradation of lake wetlands caused by global climate change and human activities limits the carbon sink function of wetlands. The status and causes of lake wetland degradation in China were combed, the effects of land use changes, biodiversity reduction and environmental pollution on the carbon sinks function of lake wetlands were analyzed, and the common lake wetland ecological restoration technology and the approaches to increase the carbon storage were summarized in this study. (1) Water environment remediation technology can improve wetland plants and soil carbon storage by removing endogenous and exogenous pollutants, improving the water quality of lake wetlands, and slowing down greenhouse gas emissions, and improve wetland plants and soil carbon storage. (2) Bioremediation technology can directly increase plant carbon storage, and then improve soil/sediment carbon storage through plant source carbon input and microbial action. Hydrologic and habitat restoration technologies can create favorable water levels and habitat conditions for bioremediation. The research about the biodiversity and its collaborative relationship and mechanisms with carbon sinks of lake wetlands, the impact of water quality on the carbon evolution of lake wetlands, the saturation carbon sink, and the measurement and approval system of lake wetlands should be further studied. The results are expected to provide a scientific basis for achieving the carbon peaking and neutrality goals of China.

Key words

lake wetland / carbon sink / degraded ecosystem / vegetation restoration / ecological restoration

Cite this article

Download Citations
LI Wei , LI Jiping , ZHANG Yinlong , et al . Ecological restoration technologies for lake wetlands for carbon peaking and neutrality[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(6): 157-166 https://doi.org/10.12302/j.issn.1000-2006.202209031

References

[1]
焦念志. 研发海洋“负排放”技术,支撑国家“碳中和”需求[J]. 中国科学院院刊, 2021, 36(2):179-187.
JIAO N Z. Developing ocean negative carbon emission technology to support national carbon neutralization[J]. Bull Chin Acad Sci, 2021, 36(2):179-187.DOI:10.16418/j.issn.1000-3045.20210123001.
[2]
杨元合, 石岳, 孙文娟, 等. 中国及全球陆地生态系统碳源汇特征及其对碳中和的贡献[J]. 中国科学:生命科学, 2022, 52(4):534-574.
YANG Y H, SHI Y, SUN W J, et al. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality[J]. Sci Sin:Vitae, 2022, 52(4):534-574.DOI:10.1360/SSV-2021-0362.
[3]
曾掌权, 张灿明, 李姣, 等. 湿地生态系统碳储量与碳循环研究[J]. 中国农学通报, 2013, 29(26):88-92.
ZENG Z Q, ZHANG C M, LI J, et al. Carbon stock and cycling of wetland ecosystem[J]. Chin Agric Sci Bull, 2013, 29(26):88-92.
[4]
高欣, 王慧, 李国爽, 等. 湿地碳汇功能探讨:以泥炭地和沼泽湿地为例[J]. 中国农业文摘-农业工程, 2018, 30(6):20-21.
GAO X, WANG H, LI G S, et al. Discussion on carbon sink function of wetland:taking peatland and swamp wetland as examples[J]. Agric Sci Eng China, 2018, 30(6):20-21.DOI:10.19518/j.cnki.cn11-2531/s.2018.0151.
[5]
吕铭志, 盛连喜, 张立. 中国典型湿地生态系统碳汇功能比较[J]. 湿地科学, 2013, 11(1):114-120.
LYU M Z, SHENG L X, ZHANG L. A review on carbon fluxes for typical wetlands in different climates of China[J]. Wetl Sci, 2013, 11(1):114-120.DOI:10.13248/j.cnki.wetlandsci.2013.01.001.
[6]
国家林业局. 第二次全国湿地资源调查(2009—2013) [EB/OL]. (2014-01-28)[2022-08-30]. http://www.forestry.gov.cn/main/65/20140128/758154/.html.
[7]
SALIMI S, ALMUKTAR S A A A N, SCHOLZ M. Impact of climate change on wetland ecosystems:a critical review of experimental wetlands[J]. J Environ Manag, 2021, 286:112160.DOI:10.1016/j.jenvman.2021.112160.
[8]
TAO S L, FANG J Y, MA S H, et al. Changes in China’s lakes:climate and human impacts[J]. Natl Sci Rev, 2019, 7(1):132-140.DOI:10.1093/nsr/nwz103.
[9]
姜加虎, 黄群, 孙占东. 长江流域湖泊湿地生态环境状况分析[J]. 生态环境, 2006, 15(2):424-429.
JIANG J H, HUANG Q, SUN Z D. Analysis of ecological environment of lake-wetland in Yangtze River basin[J]. Ecol Environ, 2006, 15(2):424-429.DOI:10.16258/j.cnki.1674-5906.2006.02.045.
[10]
TANGEN B A, BANSAL S. Soil organic carbon stocks and sequestration rates of inland,freshwater wetlands:sources of variability and uncertainty[J]. Sci Total Environ, 2020, 749:141444.DOI:10.1016/j.scitotenv.2020.141444.
[11]
MA K, LIU J G, BALKOVIC J, et al. Changes in soil organic carbon stocks of wetlands on China’s Zoige Plateau from 1980 to 2010[J]. Ecol Model, 2016, 327:18-28.DOI:10.1016/j.ecolmodel.2016.01.009.
[12]
刘峰, 高云芳, 李秀启. 我国湿地退化研究概况[J]. 长江大学学报(自然科学版), 2020, 17(5):84-89,8.
LIU F, GAO Y F, LI X Q. The research survey of wetland degradation in China[J]. J Yangtze Univ (Nat Sci Ed),2020, 17(5):84-89,8.DOI:10.16772/j.cnki.1673-1409.2020.05.014.
[13]
袁洁, 赵晏强. 基于Web of Science数据库的湿地修复研究发展态势分析[J]. 生态环境学报, 2021, 30(7):1541-1548.
YUAN J, ZHAO Y Q. Trends in research on wetland restoration based on web of science database[J]. Ecol Environ Sci, 2021, 30(7):1541-1548.DOI:10.16258/j.cnki.1674-5906.2021.07.023.
[14]
串丽敏, 郑怀国, 赵同科, 等. 基于Web of Science数据库的土壤污染修复领域发展态势分析[J]. 农业环境科学学报, 2016, 35(1):12-20.
CHUAN L M, ZHENG H G, ZHAO T K, et al. Trends in research on contaminated soil remediation based on web of science database[J]. J Agro Environ Sci, 2016, 35(1):12-20.
[15]
MENG W Q, HE M X, HU B B, et al. Status of wetlands in China:a review of extent,degradation,issues and recommendations for improvement[J]. Ocean Coast Manag, 2017, 146:50-59.DOI:10.1016/j.ocecoaman.2017.06.003.
[16]
牛振国, 张海英, 王显威, 等. 1978—2008年中国湿地类型变化[J]. 科学通报, 2012, 57(16):1400-1411.
NIU Z G, ZHANG H Y, WANG X W, et al. Changes of wetland types in China from 1978 to 2008[J]. Chin Sci Bull, 2012, 57(16):1400-1411.
[17]
赵秋雨, 江鹏, 朱志强, 等. 1975—2020年环巢湖湿地景观格局演变及驱动分析[J]. 长江科学院院报, 2022, 39(5):45-53,62.
ZHAO Q Y, JIANG P, ZHU Z Q, et al. Evolution and driving forces analysis of wetland landscape pattern around Chaohu Lake from 1975 to 2020[J]. J Yangtze River Sci Res Inst, 2022, 39(5):45-53,62.
[18]
赵娣, 董峻宇, 季舒平, 等. 1978年以来5个时期南四湖区土地利用格局及土壤有机碳储量[J]. 湿地科学, 2019, 17(6):637-644.
ZHAO D, DONG J Y, JI S P, et al. Land use pattern and soil organic carbon storage in Nansihu Lakes area for 5 periods since 1978[J]. Wetl Sci, 2019, 17(6):637-644.DOI:10.13248/j.cnki.wetlandsci.2019.06.004.
[19]
陈钰, 雷琨, 杜尧, 等. 沉湖湿地近50年退化过程识别[J]. 地球科学, 2021, 46(2):661-670.
CHEN Y, LEI K, DU Y, et al. Identification of degradation process of Chenhu wetland over last 50 years[J]. Earth Sci, 2021, 46(2):661-670.
[20]
杨苗, 龚家国, 赵勇, 等. 白洋淀区域景观格局动态变化及趋势分析[J]. 生态学报, 2020, 40(20):7165-7174.
YANG M, GONG J G, ZHAO Y, et al. Analysis of dynamic changes and trends in the landscape pattern of the Baiyangdian Region[J]. Acta Ecol Sin, 2020, 40(20):7165-7174.DOI:10.5846/stxb201912302833.
[21]
刘俊国, 赵丹丹, 叶斌. 雄安新区白洋淀生态属性辨析及生态修复保护研究[J]. 生态学报, 2019, 39(9):3019-3025.
LIU J G, ZHAO D D, YE B. Ecological attributes,restoration,and protection of the Baiyangdian in Xiong’an new area[J]. Acta Ecol Sin, 2019, 39(9):3019-3025.DOI:10.5846/stxb201808111715.
[22]
于少鹏, 孙广友, 孙雅萍, 等. 南水北调东线工程沿线湖沼湿地生态环境特征及退化分析[J]. 资源科学, 2005, 27(2):121-127.
YU S P, SUN G Y, SUN Y P, et al. Features and degradation of eco-environment of lakes and marshes along the east route of the south-to-north water transfer project[J]. Resour Sci, 2005, 27(2):121-127.
[23]
LI C, RONG Q Y, ZHU C M, et al. Distribution,sources,and risk assessment of polycyclic aromatic hydrocarbons in the estuary of Hongze Lake,China[J]. Environments, 2019, 6(8):92.DOI:10.3390/environments6080092.
[24]
李吉平, 徐勇峰, 陈子鹏, 等. 洪泽湖地区麦稻两熟农田和杨树林地氮磷径流流失特征研究[J]. 南京林业大学学报(自然科学版), 2019, 43(1):98-104.
LI J P, XU Y F, CHEN Z P, et al. Characteristics of nitrogen and phosphorus runoff of wheat-rice double cropping field and poplar forest land in intersection area of Hung-tse Lake[J]. J Nanjing For Univ (Nat Sci Ed),2019, 43(1):98-104.DOI:10.3969/j.issn.1000-2006.201806022.
[25]
崔嘉宇, 郭蓉, 宋兴伟, 等. 洪泽湖出入河流及湖体氮、磷浓度时空变化(2010—2019年)[J]. 湖泊科学, 2021, 33(6):1727-1741.
CUI J Y, GUO R, SONG X W, et al. Spatio-temporal variations of total nitrogen and total phosphorus in lake and inflow/outflow rivers of Lake Hongze,2010-2019[J]. J Lake Sci, 2021, 33(6):1727-1741.
[26]
盛路遥, 魏佳豪, 兰林, 等. 洪泽湖湖滨带表层沉积物氮、磷、有机质分布及污染评价[J]. 环境监控与预警, 2022, 14(3):13-18.
SHENG L Y, WEI J H, LAN L, et al. Distribution characteristics and pollution assessment of nitrogen,phosphorus and organic matter in surface sediments in littoral zone of lake Hongze[J]. Environ Monit Forewarning, 2022, 14(3):13-18.
[27]
朱陈名, 朱咏莉, 韩建刚, 等. 洪泽湖重金属污染现状与防控技术[J]. 南京林业大学学报(自然科学版), 2017, 41(3):175-181.
ZHU C M, ZHU Y L, HAN J G, et al. The heavy metal pollution situation and control in Hongtse Lake[J]. J Nanjing For Univ (Nat Sci Ed),2017, 41(3):175-181.DOI:10.3969/j.issn.1000-2006.201604014.
[28]
XIE Q, QIAN L S, LIU S Y, et al. Assessment of long-term effects from cage culture practices on heavy metal accumulation in sediment and fish[J]. Ecotoxicol Environ Saf, 2020, 194:110433.DOI:10.1016/j.ecoenv.2020.110433.
[29]
XIA W T, QU X, ZHANG Y X, et al. Effects of aquaculture on lakes in the central Yangtze River Basin,China,Ⅲ:heavy metals[J]. N Am N J Aquac, 2018, 80(4):436-446.DOI:10.1002/naaq.10060.
[30]
LIU X H, LU S Y, GUO W, et al. Antibiotics in the aquatic environments:a review of lakes,China[J]. Sci Total Environ, 2018, 627:1195-1208.DOI:10.1016/j.scitotenv.2018.01.271.
[31]
LIU X H, LIU Y, LU S Y, et al. Occurrence of typical antibiotics and source analysis based on PCA-MLR model in the East Dongting Lake,China[J]. Ecotoxicol Environ Saf, 2018, 163:145-152.DOI:10.1016/j.ecoenv.2018.07.067.
[32]
王志强, 崔爱花, 缪建群, 等. 淡水湖泊生态系统退化驱动因子及修复技术研究进展[J]. 生态学报, 2017, 37(18):6253-6264.
WANG Z Q, CUI A H, MIAO J Q, et al. Research progress on the driving factors of freshwater lake ecosystem degradation and associated restoration techniques[J]. Acta Ecol Sin, 2017, 37(18):6253-6264.
[33]
刘波, 何师意. 洪湖湿地地质碳汇效应初步研究[J]. 资源环境与工程, 2016, 30(6):862-871.
LIU B, HE S Y. Preliminary study on geological carbon sink effect in Honghu wetland[J]. Resour Environ & Eng, 2016, 30(6):862-871.DOI:10.16536/j.cnki.issn.1671-1211.2016.06.013.
[34]
纪昌品, 张晓平. 鄱阳湖不同湿地植物群落光合碳储量及分配[J]. 水土保持研究, 2022, 29(3):121-127.
JI C P, ZHANG X P. Photosynthetic carbon storage and distribution in different wetland communities in Poyang Lake[J]. Res Soil Water Conserv, 2022, 29(3):121-127.DOI:10.13869/j.cnki.rswc.2022.03.010.
[35]
潘宝宝, 张金池, 冯开宇, 等. 洪泽湖典型水生植物群落碳储量[J]. 湿地科学, 2014, 12(4):471-476.
PAN B B, ZHANG J C, FENG K Y, et al. Carbon storage of typical aquatic plant communities in Hungtse Lake[J]. Wetl Sci, 2014, 12(4):471-476.DOI:10.13248/j.cnki.wetlandsci.2014.04.010.
[36]
汪琴, 胡佳, 冯哲, 等. 鄱阳湖南矶湿地6种优势植物群落植被碳储量分布特征[J]. 江西师范大学学报(自然科学版), 2020, 44(4):437-441.
WANG Q, HU J, FENG Z, et al. The characteristics of carbon storage in six dominant plant communities in Nanji wetland,Poyang lake[J]. J Jiangxi Norm Univ (Nat Sci Ed),2020, 44(4):437-441.DOI:10.16357/j.cnki.issn1000-5862.2020.04.17.
[37]
王晓, 于兵, 李继红. 土地利用和土地覆被变化对土壤有机碳密度及碳储量变化的影响:以黑龙江省大庆市为例[J]. 东北林业大学学报, 2021, 49(11):76-83.
WANG X, YU B, LI J H. Effects of land use and land cover change on soil organic carbon density and carbon storage:a case study of Daqing,Heilongjiang Province[J]. J Northeast For Univ, 2021, 49(11):76-83.DOI:10.13759/j.cnki.dlxb.2021.11.014.
[38]
杨长明, 陈霞智, 张一夔, 等. 土地利用与覆被变化对巢湖湖滨带土壤有机碳组分及酶活性的影响[J]. 湖泊科学, 2021, 33(6):1766-1776.
YANG C M, CHEN X Z, ZHANG Y K, et al. Effect of land use and cover change on soil organic carbon fractions and enzymatic activities in lakeshore wetland of north shore of Lake Chaohu[J]. J Lake Sci, 2021, 33(6):1766-1776.
[39]
季淮, 韩建刚, 李萍萍, 等. 洪泽湖湿地植被类型对土壤有机碳粒径分布及微生物群落结构特征的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(1):141-150.
JI H, HAN J G, LI P P, et al. Effects of different vegetation types on soil organic carbon particle size distribution and microbial community structure in Hongtse Lake wetland[J]. J Nanjing For Univ (Nat Sci Ed), 2021, 45(1):141-150. DOI: 10.12302/j.issn.1000-2006.201909049.
[40]
黄莉. 微生物对鄱阳湖湿地不同围垦时间及土地利用类型的响应[D]. 南昌: 江西师范大学, 2013.
HUANG L. The responses of microe to the different reclamation periods and land-use patterns of Poyang Lake wetland[D]. Nanchang: Jiangxi Normal University, 2013.
[41]
卢明星, 徐传红, 朱咏莉, 等. Cd诱导土壤ALP的Hormesis效应:土地利用变化的驱动机制[J]. 南京林业大学学报(自然科学版), 2020, 44(2):173-180.
LU M X, XU C H, ZHU Y L, et al. Hormetic effect of Cd on soil alkaline phosphatase:driving mechanism of land use change[J]. J Nanjing For Univ (Nat Sci Ed),2020, 44(2):173-180.DOI:10.3969/j.issn.1000-2006.201903054.
[42]
简兴, 王松, 翟晓钰, 等. 安徽三汊河国家湿地公园不同土地利用方式下表层土壤活性有机碳含量[J]. 湿地科学, 2019, 17(5):511-518.
JIAN X, WANG S, ZHAI X Y, et al. Labile organic carbon contents in surface soil under different land-use ways in Anhui Sancha River national wetland park[J]. Wetl Sci, 2019, 17(5):511-518.DOI:10.13248/j.cnki.wetlandsci.2019.05.003.
[43]
李瑾璞, 于秀波, 夏少霞, 等. 白洋淀湿地区土壤有机碳密度及储量的空间分布特征[J]. 生态学报, 2020, 40(24):8928-8935.
LI J P, YU X B, XIA S X, et al. The spatial distribution of soil organic carbon density and carbon storage in Baiyangdian wetland[J]. Acta Ecol Sin, 2020, 40(24):8928-8935.DOI:10.5846/stxb201911142431.
[44]
HE D M, RUAN H H. Long term effect of land reclamation from lake on chemical composition of soil organic matter and its mineralization[J]. PLoS One, 2014, 9(6):e99251.DOI:10.1371/journal.pone.0099251.
[45]
JI H, HAN J G, XUE J M, et al. Soil organic carbon pool and chemical composition under different types of land use in wetland:implication for carbon sequestration in wetlands[J]. Sci Total Environ, 2020, 716:136996.DOI:10.1016/j.scitotenv.2020.136996.
[46]
BAI J H, XIAO R, ZHANG K, et al. Soil organic carbon as affected by land use in young and old reclaimed regions of a coastal estuary wetland,China[J]. Soil Use Manag, 2013, 29(1):57-64.DOI:10.1111/sum.12021.
[47]
WU X, NGUYEN-SY T, SUN Z, et al. Soil organic matter dynamics as affected by land use change from rice paddy to wetland[J]. Wetlands, 2020, 40(6):2199-2207.DOI:10.1007/s13157-020-01321-5.
[48]
LIU W J, SU| Y Z, YANG R, et al. Land use effects on soil organic carbon,nitrogen and salinity in saline-alkaline wetland[J]. Sci Cold Arid Reg, 2010, 2(3):263-270.
[49]
ANDREETTA A, HUERTAS A D, LOTTI M, et al. Land use changes affecting soil organic carbon storage along a mangrove swamp rice chronosequence in the Cacheu and Oio regions (northern Guinea-Bissau)[J]. Agric Ecosyst Environ, 2016, 216:314-321.DOI:10.1016/j.agee.2015.10.017.
[50]
ZHANG G L. Changes of soil labile organic carbon in different land uses in Sanjiang Plain,Heilongjiang Province[J]. Chin Geogr Sci, 2010, 20(2):139-143.DOI:10.1007/s11769-010-0139-4.
[51]
简兴, 王松, 王玉良, 等. 城市湿地周边不同土地利用方式下土壤有机碳及其活性组分特征[J]. 浙江农业学报, 2016, 28(1):119-126.
JIAN X, WANG S, WANG Y L, et al. Soil organic carbon and its active components characteristics under different land utilization types at the periphery of city wetlands[J]. Acta Agric Zhejiangensis, 2016, 28(1):119-126.
[52]
刘刚, 陈利. 洪湖湿地碳储量的研究[J]. 中南林业科技大学学报, 2013, 33(8):103-107.
LIU G, CHEN L. Study on carbon storage in Honghu Lake wetland[J]. J Central South Univ For & Technol, 2013, 33(8):103-107.DOI:10.14067/j.cnki.1673-923x.2013.08.001.
[53]
张文菊, 彭佩钦, 童成立, 等. 洞庭湖湿地有机碳垂直分布与组成特征[J]. 环境科学, 2005, 26(3):56-60.
ZHANG W J, PENG P Q, TONG C L, et al. Characteristics of distribution and composition of organic carbon in Dongting Lake floodplain[J]. Environ Sci, 2005, 26(3):56-60.DOI:10.13227/j.hjkx.2005.03.012.
[54]
XU S, EISENHAUER N, FERLIAN O, et al. Species richness promotes ecosystem carbon storage:evidence from biodiversity-ecosystem functioning experiments[J]. Proc Biol Sci,2020, 287( 1939):20202063.DOI:10.1098/rspb.2020.2063.
[55]
LANGE M, EISENHAUER N, SIERRA C A, et al. Plant diversity increases soil microbial activity and soil carbon storage[J]. Nat Commun, 2015, 6:6707.DOI:10.1038/ncomms7707.
[56]
SCHULTZ R E, PETT L. Plant community effects on CH4 fluxes,root surface area,and carbon storage in experimental wetlands[J]. Ecol Eng, 2018, 114:96-103.DOI:10.1016/j.ecoleng.2017.06.027.
[57]
ZHANG Q J, WANG Z S, XIA S X, et al. Hydrologic-induced concentrated soil nutrients and improved plant growth increased carbon storage in a floodplain wetland over wet-dry alternating zones[J]. Sci Total Environ, 2022, 822:153512.DOI:10.1016/j.scitotenv.2022.153512.
[58]
CHEN X, CHEN H Y H. Plant diversity loss reduces soil respiration across terrestrial ecosystems[J]. Global Change Biology, 2019, 25(4): 1482-1492. DOI:10.1111/gcb.14567.
[59]
LI Q G, LONG Z Q, WANG H J, et al. Functions of constructed wetland animals in water environment protection:a critical review[J]. Sci Total Environ, 2021, 760:144038.DOI:10.1016/j.scitotenv.2020.144038.
[60]
PACHECO F S, ROLAND F, DOWNING J A. Eutrophication reverses whole-lake carbon budgets[J]. Inland Waters, 2014, 4(1):41-48.DOI:10.5268/IW-4.1.614.
[61]
GUI Z F, XUE B, YAO S C, et al. Organic carbon burial in lake sediments in the middle and lower reaches of the Yangtze River Basin,China[J]. Hydrobiologia, 2013, 710(1):143-156.DOI:10.1007/s10750-012-1365-9.
[62]
易文利, 王圣瑞, 杨苏文, 等. 长江中下游浅水湖泊沉积物腐殖质组分赋存特征[J]. 湖泊科学, 2011, 23(1):21-28.
YI W L, WANG S R, YANG S W, et al. Humus distribution and forms in the sediments from shallow lakes in the middle and lower reaches of the Yangtze River[J]. J Lake Sci, 2011, 23(1):21-28.
[63]
庞佳丽, 许燕红, 何毓新, 等. 太湖梅梁湾藻华暴发-消退周期表层水体溶解性有机质分子特征[J]. 湖泊科学, 2020, 32(6):1599-1609.
PANG J L, XU Y H, HE Y X, et al. Molecular characteristics of surface dissolved organic matter in Meiliang Bay of Lake Taihu over the algal blooming-disappearance cycle[J]. J Lake Sci, 2020, 32(6):1599-1609.DOI:10.18307/2020.0603.
[64]
NIU Y, YE Q R, LIU Q, et al. Effect of river-lake connectivity on ecological stoichiometry of lake and carbon storage status in Eastern Plain,China[J]. Environ Geochem Health, 2022:1-13.DOI:10.1007/s10653-022-01300-1.
[65]
唐玉姝, 王磊, 席雪飞, 等. 典型气候/环境因子变化对九段沙湿地碳固定潜力的影响[J]. 农业环境科学学报, 2013, 32(4):874-880.
TANG Y S, WANG L, XI X F, et al. Effects of changes of typical climate/environmental factors on soil carbon sequestration potential in Jiuduansha wetland,China[J]. J Agro Environ Sci, 2013, 32(4):874-880.DOI:10.11654/jaes.2013.04.031.
[66]
KUFEL L, STRZAŁEK M, BIARDZKA E, et al. Carbon and nutrients transfer from primary producers to lake sediments:a stoichiometric approach[J]. Limnologica, 2020, 83:125794.DOI:10.1016/j.limno.2020.125794.
[67]
魏媛媛, 张杰, 谢思敏, 等. 重金属Cd胁迫对荻和芦苇种子萌发与幼苗生长的影响[J]. 安徽师范大学学报(自然科学版), 2021, 44(2):145-152.
WEI Y Y, ZHANG J, XIE S M, et al. The effects on seed germination and seedlings growth of Miscanthus sacchariflorus and Phragmites australis under Cd stress[J]. J Anhui Norm Univ (Nat Sci),2021, 44(2):145-152.DOI:10.14182/J.cnki.1001-2443.2021.02.007.
[68]
张娜, 朱阳春, 李志强, 等. 淹水和干旱生境下铅对芦苇生长、生物量分配和光合作用的影响[J]. 植物生态学报, 2018, 42(2):229-239.
ZHANG N, ZHU Y C, LI Z Q, et al. Effect of Pb pollution on the growth,biomass allocation and photosynthesis of Phragmites australis in flood and drought environment[J]. Chin J Plant Ecol, 2018, 42(2):229-239.
[69]
林海, 刘俊飞, 刘璐璐, 等. 菖蒲和芦苇对复合重金属胁迫的生理反应及其富集能力[J]. 工程科学学报, 2017, 39(7):1123-1128.
LIN H, LIU J F, LIU L L, et al. Physiological responses of Acorus calamus and reed under composite heavy metal stress and their enrichment ability[J]. Chin J Eng, 2017, 39(7):1123-1128.DOI:10.13374/j.issn2095-9389.2017.07.020.
[70]
POLECHONSKA L, SAMECKA-CYMERMAN A. The effect of environmental contamination on the decomposition of European frog-bit (Hydrocharis morsus-ranae L.) in natural conditions[J]. Aquat Bot, 2015, 127:35-43.DOI:10.1016/j.aquabot.2015.07.006.
[71]
薛银婷, 林永慧, 何兴兵, 等. 铅污染对湘西地区毛竹凋落物分解的影响[J]. 重庆师范大学学报(自然科学版), 2018, 35(1):117-123.
XUE Y T, LIN Y H, HE X B, et al. Effects of lead on the decomposition of Phyllostachys pubescens leaf litter in western Hu’nan Province[J]. J Chongqing Norm Univ (Nat Sci), 2018, 35(1):117-123.DOI:10.11721/cqnuj20170456.
[72]
MA J J, ULLAH S, NIU A Y, et al. Heavy metal pollution increases CH4 and decreases CO2 emissions due to soil microbial changes in a mangrove wetland:microcosm experiment and field examination[J]. Chemosphere, 2021, 269:128735.DOI:10.1016/j.chemosphere.2020.128735.
[73]
王圣燕, 陈圆, 徐勇峰, 等. 洪泽湖湿地重金属含量与N2O释放特征及关系[J]. 福建农林大学学报(自然科学版), 2018, 47(2):236-242.
WANG S Y, CHEN Y, XU Y F, et al. Relationship between heavy metal contents and N2O emission in sediments from Hung-tse Lake wetland[J]. J Fujian Agric For Univ (Nat Sci Ed), 2018, 47(2):236-242.DOI:10.13323/j.cnki.j.fafu(nat.sci.).2018.02.017.
[74]
MAGALHÃES C, COSTA J, TEIXEIRA C, et al. Impact of trace metals on denitrification in estuarine sediments of the Douro River estuary,Portugal[J]. Mar Chem, 2007, 107(3):332-341.DOI:10.1016/j.marchem.2007.02.005.
[75]
周静, 万荣荣, 吴兴华, 等. 洞庭湖湿地植被长期格局变化(1987—2016年)及其对水文过程的响应[J]. 湖泊科学, 2020, 32(6):1723-1735.
ZHOU J, WAN R R, WU X H, et al. Patterns of long-term distribution of typical wetland vegetation(1987-2016) and its response to hydrological processes in Lake Dongting[J]. J Lake Sci, 2020, 32(6):1723-1735.
[76]
朱江, 林小莉. 湖泊湿地生态修复规划研究:以岳阳南湖湿地生态修复为例[J]. 湿地科学与管理, 2020, 16(3):12-16.
ZHU J, LIN X L. Ecological restoration planning of lake wetland:a case study of Nanhu Lake wetland in Yueyang City[J]. Wetl Sci & Manag, 2020, 16(3):12-16.DOI:10.3969/j.issn.1673-3290.2020.03.03.
[77]
邓正苗, 谢永宏, 陈心胜, 等. 洞庭湖流域湿地生态修复技术与模式[J]. 农业现代化研究, 2018, 39(6):994-1008.
DENG Z M, XIE Y H, CHEN X S, et al. Wetland ecological restoration techniques and models in Dongting Lake basin[J]. Res Agric Mod, 2018, 39(6):994-1008.DOI:10.13872/j.1000-0275.2018.0089.
[78]
徐新洲, 薛建辉, 吕志刚, 等. 太湖贡湖湾湖滨湿地生态功能区与植被修复研究[J]. 南京林业大学学报(自然科学版), 2013, 37(3):35-40.
XU X Z, XUE J H, LYU Z G, et al. A research of ecological function area and vegetation restoration at Taihu Gonghu Bay wetland[J]. J Nanjing For Univ (Nat Sci Ed), 2013, 37(3):35-40.DOI:10.3969/j.issn.1000-2006.2013.03.008.
[79]
姜月华, 倪化勇, 周权平, 等. 长江经济带生态修复示范关键技术及其应用[J]. 中国地质, 2021, 48(5):1305-1333.
JIANG Y H, NI H Y, ZHOU Q P, et al. Key technology of ecological restoration demonstration in the Yangtze River Economic Zone and its application[J]. Geol China, 2021, 48(5):1305-1333.
[80]
FRASER L H, CARTY S M, STEER D. A test of four plant species to reduce total nitrogen and total phosphorus from soil leachate in subsurface wetland microcosms[J]. Bioresour Technol, 2004, 94(2):185-192.DOI:10.1016/j.biortech.2003.11.023.
[81]
CAI YJ, LIANG J S, ZHANG P Y, et al. Review on strategies of close-to-natural wetland restoration and a brief case plan for a typical wetland in Northern China[J]. Chemosphere, 2021, 285:131534.DOI:10.1016/j.chemosphere.2021.131534.
[82]
胡振鹏. 鄱阳湖流域生态修复的理论、方法及其应用[J]. 长江流域资源与环境, 2012, 21(3):259-267.
HU Z P. Theory,method and its application on the ecological rehabilitation in the Poyang Lake basin[J]. Resour Environ Yangtze Basin, 2012, 21(3):259-267.
[83]
殷雪妍, 严广寒, 汪星. 太湖湖滨带水生植被恢复技术集成与应用浅析[J]. 华东师范大学学报(自然科学版), 2021(4):26-38.
YIN X Y, YAN G H, WANG X. Research on the integration and application of aquatic vegetation restoration technology in the lakeshore zone of Taihu Lake[J]. J East China Norm Univ (Nat Sci), 2021(4):26-38.DOI:10.3969/j.issn.1000-5641.2021.04.004.
[84]
李萍萍, 韩建刚, 吴翼. 洪泽湖河湖交汇区湿地生态与农业环境研究[M]. 北京: 科学出版社, 2020.
LI P P, HAN J G, WU Y. Study on wetland ecology and agricultural environment in the intersection area of Hongze Lake[M]. Beijing: Science Press, 2020.
[85]
卜晓莉, 王利民, 薛建辉. 湖滨林草复合缓冲带对泥沙和氮磷的拦截效果[J]. 水土保持学报, 2015, 29(4):32-36.
BU X L, WANG L M, XUE J H. Study on sediment and nutrient retention efficiency of integrated tree-grass riparian buffer strips[J]. J Soil Water Conserv, 2015, 29(4):32-36.DOI:10.13870/j.cnki.stbcxb.2015.04.007.
[86]
程志永. 巢湖湖滨缓冲带生态景观构建与功能修复模式研究[J]. 西安建筑科技大学学报(社会科学版), 2015, 34(2):58-62.
CHENG Z Y. A research on the ecological landscape construction and the function restoration model of Chaohu Lake buffer zone[J]. J Xi’an Univ Archit & Technol (Soc Sci Ed),2015, 34(2):58-62.DOI:10.15986/j.1008-7192.2015.02.013.
[87]
BROWN M T, BOYER T, SINDELAR R J, et al. A floating island treatment system for the removal of Phosphorus from surface waters[J]. Engineering, 2018, 4(5):597-609.DOI:10.1016/j.eng.2018.08.002.
[88]
蒲旖旎. “退养还湖”前后东太湖CO2和CH4通量的变化及影响因素[D]. 南京: 南京信息工程大学, 2022.
PU Y N. The variations of CO2 and CH4 fluxes and impact factors in east lake Taihu for pre- and post-returning aquaculture to lakes[D]. Nanjing: Nanjing University of Information Science & Technology, 2022.
[89]
韩广轩, 李隽永, 屈文笛. 氮输入对滨海盐沼湿地碳循环关键过程的影响及机制[J]. 植物生态学报, 2021, 45(4):321-333.
HAN G X, LI J Y, QU W D. Effects of nitrogen input on carbon cycle and carbon budget in a coastal salt marsh[J]. Chin J Plant Ecol, 2021, 45(4):321-333.DOI:10.17521/cjpe.2020.0353.
[90]
PENG Y F, PENG Z P, ZENG X T, et al. Effects of nitrogen-phosphorus imbalance on plant biomass production:a global perspective[J]. Plant Soil, 2019, 436(1):245-252.DOI:10.1007/s11104-018-03927-5.
[91]
韩建刚, 刘新. 一种城市河川坡岸绿地的水污染物生态拦截方法:CN104891666B[P]. 2017-02-01.
HAN J G, LIU X. Ecological water pollutant interception method for urban river bank greenbelts:CN104891666B[P]. 2017-02-01.
[92]
韩建刚, 王新新, 季淮, 等.一种高效、 持续阻截和净化径流中新型有机污染物的方法:CN106587360A[P]. 2017-04-26.
HAN J G, WANG X X, JI H, et al. Method for efficiently and continuously intercepting and decontaminating emerging organic contaminants (EOCs) in runoff:CN106587360A[P]. 2017-04-26.
PDF(13026 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/