A review of non-wood forest research in China and the potential development of key technologies

PENG Fangren, ZHU Kaikai, TAN Pengpeng

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (6) : 127-134.

PDF(1712 KB)
PDF(1712 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2022, Vol. 46 ›› Issue (6) : 127-134. DOI: 10.12302/j.issn.1000-2006.202209050

A review of non-wood forest research in China and the potential development of key technologies

Author information +
History +

Abstract

Non-wood forests are an important part of forest resources in China, which are associated with ecology, economy and social benefits. Non-wood forests play important roles in promoting the rural economic development and increasing farmers’ income in mountainous areas. Based on the comprehensive introduction of the development status of non-wood forests in China, this study summarizes the main research progress in various fields, including the collection and utilization of germplasm resources of non-wood forests, selection and breeding of improved varieties, mechanisms of high-yield cultivation, and processing and utilization of non-wood forest products. We propose that the key technologies for future non-wood forest research that will achieve technological breakthroughs are genome editing and molecular design breeding, using microorganisms to improve soil fertility, intelligent forestry, improving the ability to resist abiotic stress, optimizing the photosynthesis and improving the utilization rates of light energy, and the higher value addition products of non-wood forests. This review will provide useful information for non-wood forest industry development in China.

Key words

non-wood forest / development status / key technologies / improved variety / high-yield cultivation

Cite this article

Download Citations
PENG Fangren , ZHU Kaikai , TAN Pengpeng. A review of non-wood forest research in China and the potential development of key technologies[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2022, 46(6): 127-134 https://doi.org/10.12302/j.issn.1000-2006.202209050

References

[1]
徐湘江, 薛秋生, 李宏秋. 我国经济林产业发展现状与趋势[J]. 中国林副特产, 2013(3):102-105.
XU X J, XUE Q S, LI H Q. Development status and trend of economic forest industry in China[J]. For Prod Speciality China, 2013(3):102-105.DOI:10.13268/j.cnki.fbsic.2013.03.013.
[2]
周力军. 我国经济林产业发展形势及国家扶持政策(下)[J]. 国土绿化, 2018(2):22-24.
ZHOU L J. Development situation of China’s economic forest industry and national supporting policies (Ⅱ)[J]. Land Green, 2018(2):22-24.
[3]
陈建华, 吕芳德, 谷战英, 等. 我国现代经济林产业体系建设的成就[J]. 经济林研究, 2010, 28(3):56-61.
CHEN J H, F D, GU Z Y, et al. Achievements in construction of modern nonwood forest industry system in China[J]. Nonwood For Res, 2010, 28(3):56-61.DOI:10.14067/j.cnki.1003-8981.2010.03.030.
[4]
邹大林, 靳爱仙, 何友均. 我国主要经济林产品供求分析[J]. 北京林业大学学报(社会科学版), 2005, 4(2):61-65.
ZOU D L, JIN A X, HE Y J. Analysis on the supply and demand of China’s main economic forest products[J]. J Beijing For Univ (Soc Sci),2005, 4(2):61-65.DOI:10.3969/j.issn.1671-6116.2005.02.013.
[5]
雷小林, 邓小梅. 21世纪经济林果业工程的展望[J]. 江西林业科技, 2000, 28(2):28-29.
LEI X L, DENG X M. Prospect of economic forest and fruit industry project in 21st Century[J]. Jiangxi For Sci Technol, 2000, 28(2):28-29.DOI:10.16259/j.cnki.36-1342/s.2000.02.015.
[6]
庄瑞林. 我国经济林良种选育“七五”期间取得的成就[J]. 经济林研究, 1992, 10(S1):62-65.
ZHUANG R L. Achievements of China’s economic forest breeding during the seventh five-year plan[J]. Econ For Res, 1992, 10(S1):62-65.
[7]
姚小华. 经济林产业现代化的思考[J]. 林业科技开发, 2004, 18(4):3-6.
YAO X H. Thoughts on modernization of economic forest industry[J]. China For Sci Technol, 2004, 18(4):3-6.
[8]
高凤山, 陈学贵, 赵春磊. 浅谈经济林树种在我省生态建设中的地位和作用[J]. 山东林业科技, 2005, 35(3):74-75.
GAO F S, CHEN X G, ZHAO C L. Discussion on the position and function of economic forest tree species in ecological construction of our Province[J]. J Shandong For Sci Technol, 2005, 35(3):74-75.DOI:10.3969/j.issn.1002-2724.2005.03.043.
[9]
李少宁, 陶雪莹, 鲁绍伟, 等. 北京市经济林生态系统服务功能评估[J]. 西北林学院学报, 2022, 37(1):267-272.
LI S N, TAO X Y, LU S W, et al. Evaluation of the service function of Beijing non-timber forest ecosystem[J]. J Northwest For Univ, 2022, 37(1):267-272.
[10]
韦维, 刘晓蔚, 朱金鸟, 等. 油茶种质资源库信息系统设计与实现[J]. 广西林业科学, 2017, 46(4):428-430.
WEI W, LIU X W, ZHU J N, et al. Design and achievement of Camellia germplasm resource library information system[J]. Guangxi For Sci, 2017, 46(4):428-430.DOI:10.3969/j.issn.1006-1126.2017.04.020.
[11]
黄瑞春, 谭晓风, 王承南, 等. 油桐种质资源库品比试验初步研究[J]. 中南林业科技大学学报, 2011, 31(9):38-41.
HUANG R C, TAN X F, WANG C N, et al. Preliminary study on comparison genetic resources center in Vernicia fordii[J]. J Central South Univ For & Technol, 2011, 31(9):38-41.DOI:10.14067/j.cnki.1673-923x.2011.09.028.
[12]
韦维, 梁星星, 何应会, 等. 基于物联网的广西国家林木种质资源库信息平台构建[J]. 广西林业科学, 2021, 50(2):230-235.
WEI W, LIANG X X, HE Y H, et al. Construction of information platform of Guangxi forest germplasm resource bank based on Internet of Things[J]. Guangxi For Sci, 2021, 50(2):230-235.DOI:10.19692/j.cnki.gfs.2021.02.019.
[13]
陈永忠, 邓绍宏, 陈隆升, 等. 油茶产业发展新论[J]. 南京林业大学学报(自然科学版), 2020, 44(1):1-10.
CHEN Y Z, DENG S H, CHEN L S, et al. A new view on the development of oil tea camellia industry[J]. J Nanjing For Univ (Nat Sci Ed),2020, 44(1):1-10.DOI:10.3969/j.issn.1000-2006.201909033.
[14]
曹福亮, 黄敏仁, 桂仁意, 等. 银杏主要栽培品种遗传多样性分析[J]. 南京林业大学学报(自然科学版), 2005, 29(6):1-6.
CAO F L, HUANG M R, GUI R Y, et al. The fingerprinting and genetic diversity of main Ginkgo cultivars[J]. J Nanjing For Univ (Nat Sci Ed), 2005, 29(6):1-6.DOI:10.3969/j.issn.1000-2006.2005.06.001.
[15]
谭晓风, 胡芳名, 谢禄山, 等. 油茶种子EST文库构建及主要表达基因的分析[J]. 林业科学, 2006, 42(1):43-48.
TAN X F, HU F M, XIE L S, et al. Construction of EST library and analysis of main expressed genes of Camellia oleifera seeds[J]. Sci Silvae Sin, 2006, 42(1):43-48.
[16]
黄威剑, 李梦. 果树全基因组测序现状与展望[J]. 园艺学报, 2021, 48(4): 733-748. DOI:10.16420/j.issn.0513-353x.2020-0069.
HUANG W J, LI M. Status and prospect of whole genome sequencing in fruit trees[J]. Journal of Horticulture, 2021, 48(4): 733-748. DOI:10.16420/j.issn.0513-353x.2020-0069.
[17]
冉洪, 张莹, 胡陶, 等. 经济树种全基因组测序成果要报[J]. 经济林研究, 2015, 33(2): 149-157. DOI:10.14067/j.cnki.1003-8981.2015.02.026.
RAN H, ZHANG Y, HU T, et al. The whole genome sequencing results of economic tree species should be reported[J]. Economic Forest Research, 2015, 33(2): 149-157. DOI:10.14067/j.cnki.1003-8981.2015.02.026.
[18]
施季森, 王占军, 陈金慧. 木本植物全基因组测序研究进展[J]. 遗传, 2012, 34(2): 145-156. DOI:10.3724/SP.J.1005.2012.00145.
SHI J S, WANG Z J, CHEN J H. Research progress in sequencing the whole genome of woody plants[J]. Genetics, 2012, 34(2): 145-156. DOI: 10.3724/SP.J.1005.2012.00145.
[19]
刘海琳. 银杏全基因组测序及生物信息学分析[D]. 南京: 南京林业大学, 2018.
LIU H L. Genome sequencing and bioinformatics analysis of Ginkgo biloba[D]. Nanjing: Nanjing Forestry University, 2018
[20]
LIU H L, WANG X B, WANG G B, et al. The nearly complete genome of Ginkgo biloba illuminates gymnosperm evolution[J]. Nat Plants, 2021, 7(6):748-756.DOI:10.1038/s41477-021-00933-x.
[21]
LIN P, WANG K L, WANG Y P, et al. The genome of oil-Camellia and population genomics analysis provide insights into seed oil domestication[J]. Genome Biol, 2022, 23(1):14.DOI:10.1186/s13059-021-02599-2.
[22]
袁德义, 范晓明, 谭晓风, 等. 油茶带芽茎段及叶片离体培养再生体系的建立[J]. 南京林业大学学报(自然科学版), 2013, 37(5):35-39.
YUAN D Y, FAN X M, TAN X F, et al. Culture in vitro and rapid propagation techniques of buds and leafs in Camellia oleifera[J]. J Nanjing For Univ (Nat Sci Ed), 2013, 37(5):35-39.
[23]
邢瑞丹, 李亚东, 刘庆忠, 等. 香玲核桃离体叶片再生体系的建立[J]. 果树学报, 2010, 27(1):146-149,159.
XING R D, LI Y D, LIU Q Z, et al. Adventitious shoot regeneration from in vitro leaf of Juglans regia cv.Xiangling[J]. J Fruit Sci, 2010, 27(1):146-149,159.DOI:10.13925/j.cnki.gsxb.2010.01.034.
[24]
梁文杰, 谭晓风, 乌云塔娜. 梨自交不亲和基因克隆及其进化分析[J]. 果树学报, 2021, 38(10): 1621-1637. DOI:10.13925/j.cnki.gsxb.20210195.
LIANG W J, TAN X F, WUYUN T N. Cloning and evolutionary analysis of pear self incompatibility gene[J]. Journal of Fruit Trees, 2021, 38(10): 1621-1637. DOI:10.13925/j.cnki.gsxb.20210195.
[25]
江南, 谭晓风. 基于基因芯片的梨品种S基因型鉴定的技术方法[J]. 中南林业科技大学学报, 2007, 27(1):104-108.
JIANG N, TAN X F. Identification technology for pear cultivar S-genotype based on genechips[J]. J Central South Univ For & Technol, 2007, 27(1):104-108.DOI:10.3969/j.issn.1673-923X.2007.01.020.
[26]
陈慧, 张树军, 张妤艳, 等. 40个梨品种S基因型的鉴定及S基因频率分析[J]. 南京农业大学学报, 2013, 36(5):21-26.
CHEN H, ZHANG S J, ZHANG Y Y, et al. Identification of S-genotypes in forty pear cultivars and analysis of S-RNase genes frequency in Pyrus[J]. J Nanjing Agric Univ, 2013, 36(5):21-26.DOI:10.7685/j.issn.1000-2030.2013.05.004.
[27]
何敏, 谷超, 吴巨友, 等. 果树自交不亲和机制研究进展[J]. 园艺学报, 2021, 48(4):759-777.
HE M, GU C, WU J Y, et al. Recent advances on self-incompatibility mechanism in fruit trees[J]. Acta Hortic Sin, 2021, 48(4):759-777.DOI:10.16420/j.issn.0513-353x.2020-0425.
[28]
江南, 谭晓风, 徐艳, 等. 油茶自交不亲和S-RNase基因鉴定与分子特征分析[J]. 植物遗传资源学报, 2022, 23(5): 1521-1535. DOI:10.13430/j.cnki.jpgr.20220412004.
JIANG N, TAN X F, XU Y, et al. Identification and molecular characterization of S-RNase gene of self incompatibility in Camellia oleifera[J]. Journal of Plant Genetic Resources, 2022, 23(5): 1521-1535. DOI:10.13430/j.cnki.jpgr.20220412004.
[29]
高超. 油茶后期自交不亲和性的细胞学研究[D]. 长沙: 中南林业科技大学, 2017.
GAO C. The cytological study on lateacting self-incompatibility in Camellia oleifera[D]. Changsha: Central South University of Forestry and Technology, 2017.
[30]
王瑞, 陈永忠, 陈隆升, 等. 油茶优良无性系芽苗砧嫁接技术体系的研究[J]. 中南林业科技大学学报, 2013, 33(7):77-80.
WANG R, CHEN Y Z, CHEN L S, et al. Study on hypocotyle grafting techniques of superior clones of Camellia oleifera[J]. J Central South Univ For & Technol, 2013, 33(7):77-80.DOI:10.14067/j.cnki.1673-923x.2013.07.017.
[31]
范成民, 董丽芬, 朱帜, 等. 核桃芽苗砧嫁接方法研究[J]. 西北林学院学报, 2008, 23(4):109-111.
FAN C M, DONG L F, ZHU Z, et al. Nurse seed grafting methods of Juglans regia[J]. J Northwest For Univ, 2008, 23(4):109-111.
[32]
谭晓风, 胡芳名. 二十一世纪经济林生产和科研的发展趋势[J]. 中南林学院学报, 2002, 22(1):82-85.
TAN X F, HU F M. Trend of non-timber forestry production and research in the 21st Century[J]. J Central South For Univ, 2002, 22(1):82-85.DOI:10.14067/j.cnki.1673-923x.2002.01.019.
[33]
WANG J, JIANG L B, WU R L. Plant grafting:How genetic exchange promotes vascular reconnection[J]. New Phytol, 2017, 214(1):56-65.DOI:10.1111/nph.14383.
[34]
MO Z H, FENG G, SU W C, et al. Transcriptomic analysis provides insights into grafting union development in pecan (Carya illinoinensis)[J]. Genes, 2018, 9(2):71.DOI:10.3390/genes9020071.
[35]
MA Q G, BU D C, ZHANG J P, et al. The transcriptome landscape of walnut interspecies hybrid (Juglans hindsii × Juglans regia) and regulation of cambial activity in relation to grafting[J]. Front Genet, 2019, 10:577.DOI:10.3389/fgene.2019.00577.
[36]
HAYAT F, IQBAL S, COULIBALY D, et al. An insight into dwarfing mechanism:contribution of scion-rootstock interactions toward fruit crop improvement[J]. Fruit Res, 2021, 1(1):1-11.DOI:10.48130/frures-2021-0003.
[37]
胡新喜, 邓子牛, 冯鹄竣, 等. 柑橘矮化育种及矮化机理研究进展[J]. 湖南农业科学, 2008(6):121-123.
HU X X, DENG Z N, FENG G J, et al. Research progress of citrus dwarfing breeding and dwarfing mechanism[J]. Hunan Agric Sci, 2008(6):121-123.DOI:10.16498/j.cnki.hnnykx.2008.06.031.
[38]
黄有军, 周丽, 陈芳芳, 等. 山核桃成花过程基因表达的cDNA-AFLP分析[J]. 浙江林学院学报, 2009, 26(3):297-301.
HUANG Y J, ZHOU L, CHEN F F, et al. Gene expression with cDNA-AFLP (amplified fragment length polymorphism) during flowering of Carya cathayensis[J]. J Zhejiang For Coll, 2009, 26(3):297-301.DOI:10.3969/j.issn.2095-0756.2009.03.001.
[39]
ASLAM M M, DENG L, WANG X B, et al. Expression patterns of genes involved in sugar metabolism and accumulation during peach fruit development and ripening[J]. Sci Hortic, 2019, 257:108633.DOI:10.1016/j.scienta.2019.108633.
[40]
HUANG R M, HUANG Y J, SUN Z C, et al. Transcriptome analysis of genes involved in lipid biosynthesis in the developing embryo of pecan (Carya illinoinensis)[J]. J Agric Food Chem, 2017, 65(20):4223-4236.DOI:10.1021/acs.jafc.7b00922.
[41]
LI C F, XU Y X, MA J Q, et al. Biochemical and transcriptomic analyses reveal different metabolite biosynthesis profiles among three color and developmental stages in ‘Anji Baicha’ (Camellia sinensis)[J]. BMC Plant Biol, 2016, 16(1):195.DOI:10.1186/s12870-016-0885-2.
[42]
CHEN L K, LU D, WANG T, et al. Identification and expression analysis of starch branching enzymes involved in starch synthesis during the development of chestnut (Castanea mollissima Blume) cotyledons[J]. PLoS One, 2017, 12(5):e0177792.DOI:10.1371/journal.pone.0177792.
[43]
HUANG J, ZHANG C M, ZHAO X, et al. The jujube genome provides insights into genome evolution and the domestication of sweetness/acidity taste in fruit trees[J]. PLoS Genet, 2016, 12(12):e1006433.DOI:10.1371/journal.pgen.1006433.
[44]
宋丽华, 秦芳, 白祥, 等. 气温升高与干旱胁迫对灵武长枣坐果与果实品质的影响[J]. 西北林学院学报, 2015, 30(2):129-133.
SONG L H, QIN F, BAI X, et al. Effect of elevated temperature and drought stress on fruit setting rate and fruit quality of Lingwu long jujuba[J]. J Northwest For Univ, 2015, 30(2):129-133.DOI: 10.3969/j.issn.1001-7461.2015.02.22
[45]
YIN K Q, GAO C X, QIU J L. Progress and prospects in plant genome editing[J]. Nat Plants, 2017, 3:17107.DOI:10.1038/nplants.2017.107.
[46]
陈赢男, 韦素云, 曲冠正, 等. 现代林木育种关键核心技术研究现状与展望[J]. 南京林业大学学报(自然科学版), 2022.
CHEN Y N, WEI S Y, QU G Z, et al. The key and core technologies for accelerating the tree breeding process[J]. J Nanjing For Univ (Nat Sci Ed), 2022. DOI: 10.3969/j.issn.1000-2006.202206020.
[47]
GAO C X. Genome engineering for crop improvement and future agriculture[J]. Cell, 2021, 184(6):1621-1635.DOI:10.1016/j.cell.2021.01.005.
[48]
XIONG J S, DING J, LI Y. Genome-editing technologies and their potential application in horticultural crop breeding[J]. Hortic Res, 2015, 2:15019.DOI:10.1038/hortres.2015.19.
[49]
CHARRIER A, VERGNE E, DOUSSET N, et al. Efficient targeted mutagenesis in apple and first time edition of pear using the CRISPR-Cas9 system[J]. Frontiers Plant Sci, 2019, 10:40. DOI: 10.3389/fpls.2019.00040.
[50]
JIA H, XU J, ORBOVIC V, et al. Editing citrus genome via SaCas9/sgRNA system[J]. Frontiers Plant Sci, 2017, 8:2135. DOI: 10.3389/fpls.2017.0213
[51]
FISTER A S, LANDHERR L, MAXIMOVA S N, et al. Transient expression of CRISPR/Cas 9 machinery targeting TcNPR3 enhances defense response in Theobroma cacao[J]. Frontiers Plant Sci, 2018, 9:268. DOI: 10.3389/fpls.2018.00268
[52]
BREITLER J C, DECHAMP E, CAMPA C, et al. CRISPR/Cas9-mediated efficient targeted mutagenesis has the potential to accelerate the domestication of Coffea canephora[J]. Plant Cell, Tiss Organ Cult, 2018, 134:383-94. DOI: 10.1007/s11240-018-1429-2
[53]
CHANG Y, SONG X, ZHANG Q, et al. Robust CRISPR/Cas9 mediated gene editing of JrWOX11 manipulated adventitious rooting and vegetative growth in a nut tree species of walnut[J]. Sci Hortic, 2022, 303: 111199. DOI: 10.1016/j.scienta.2022.111199.
[54]
VARKONYI-GASIC E, WANG T, VOOGD C, et al. Mutagenesis of kiwifruit CENTRORADIALIS-like genes transforms a climbing woody perennial with long juvenility and axillary flowering into a compact plant with rapid terminal flowering[J]. Plant Biotechnol J, 2019, 17:869-880
[55]
ZHANG W F, CAO G X, LI X L, et al. Closing yield gaps in China by empowering smallholder farmers[J]. Nature, 2016, 537(7622):671-674. DOI: 10.1038/nature19368
[56]
吴林坤, 林向民, 林文雄. 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望[J]. 植物生态学报, 2014, 38(3):298-310.
WU L K, LIN X M, LIN W X. Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates[J]. Chin J Plant Ecol, 2014, 38(3):298-310.DOI:10.3724/SP.J.1258.2014.00027.
[57]
申建波, 白洋, 韦中, 等. 根际生命共同体:协调资源、环境和粮食安全的学术思路与交叉创新[J]. 土壤学报, 2021, 58(4):805-813.
SHEN J B, BAI Y, WEI Z, et al. Rhizobiont:an interdisciplinary innovation and perspective for harmonizing resources,environment,and food security[J]. Acta Pedol Sin, 2021, 58(4):805-813.DOI:10.11766/trxb202012310722.
[58]
STASSEN M J, HSU S H, PIETERSE C M, et al. Coumarin communication along the microbiome-root-shoot axis[J]. Trends Plant Sci, 2021, 26(2):169-183. DOI: 10.1016/j.tplants.2020.09.008
[59]
张扬南. 智慧林业:现代林业发展的新方向[J]. 南京林业大学学报(人文社会科学版), 2013, 13(4):77-81,119.
ZHANG Y N. Smart forestry: a new direction for modern forestry development[J]. J Nanjing For Univ (Humanit Soc Sci Ed),2013, 13(4):77-81,119.DOI:10.16397/j.cnki.1671-1165.2013.04.007.
[60]
高万林, 李桢, 于丽娜, 等. 加快农业信息化建设促进农业现代化发展[J]. 农业现代化研究, 2010, 31(3):257-261.
GAO W L, LI Z, YU L N, et al. Speed up development of agricultural informatization and improve construction of agricultural modernization[J]. Res Agric Mod, 2010, 31(3):257-261.DOI:10.3969/j.issn.1000-0275.2010.03.001.
[61]
MONTANARO G, CRISTOS X, VITALE N, et al. Orchard management, soil organic carbon and ecosystem services in Mediterranean fruit tree crops[J]. Sci Hortic, 2017, 217: 92-101. DOI: 10.1016/j.scienta.2017.01.012
[62]
周晓光. 国外经济林产业技术发展经验及启示[J]. 经济林研究, 2020, 38(4):246-252.
ZHOU X G. Foreign experience and enlightenment of economic forest industry and technology development[J]. Non-wood Forest Research, 2020, 38(4):246-252. DOI:10.14067/j.cnki.1003-8981.2020.04.030.
[63]
WANG Z, NIU Y, VASHISTH T, et al. Nontargeted metabolomics-based multiple machine learning modeling boosts early accurate detection for citrus Huanglongbing[J]. Hortic Res, 2022, 9. DOI: 10.1093/hr/uhac145
[64]
LOVELL J T, BENTLEY N B, BHATTARAI G, et al. Four chromosome scale genomes and a pan-genome annotation to accelerate pecan tree breeding[J]. Nature Commun, 2021, 12:4125. DOI: 10.1038/s41467-021-24328-w
[65]
BAILEY-SERRES J, PARKER J E, AINSWORTH E A, et al. Genetic strategies for improving crop yields[J]. Nature, 2019, 575(7781):109-118.DOI:10.1038/s41586-019-1679-0.
[66]
李麒, 闫思宇, 陈肃. 白桦BpERF98基因的遗传转化及非生物胁迫应答反应[J]. 植物研究, 2022, 42(1):93-103.
LI Q, YAN S Y, CHEN S. Genetic transformation of BpERF98 gene and abiotic stress response of transgenic plant in Betula platyphylla[J]. Bull Bot Res, 2022, 42(1):93-103.
[67]
YANG G Y, PENG S B, WANG T Y, et al. Walnut ethylene response factor JrERF2-2 interact with JrWRKY7 to regulate the GSTs in plant drought tolerance[J]. Ecotoxicol Environ Saf, 2021, 228:112945.DOI:10.1016/j.ecoenv.2021.112945.
[68]
ZHAO M Y, ZHANG N, GAO T, et al. Sesquiterpene glucosylation mediated by glucosyltransferase UGT91Q2 is involved in the modulation of cold stress tolerance in tea plants[J]. New Phytol, 2020, 226(2):362-372.DOI:10.1111/nph.16364.
[69]
ZHANG H, ZHU J, GONG Z, et al. Abiotic stress responses in plants[J]. Nat Rev Genet, 2022, 23(2):104-119. DOI: 10.1038/s41576-021-00413-0
[70]
ZHU X G, LONG S P, ORT D R. Improving photosynthetic efficiency for greater yield[J]. Annu Rev Plant Biol, 2010, 61:235-261.DOI:10.1146/annurev-arplant-042809-112206.
[71]
孟力力, 宋江峰, 柏宗春, 等. 远红光对生菜光合作用及叶绿素荧光特性的影响[J]. 江苏农业学报, 2022, 38(1):181-189.
MENG L L, SONG J F, BAI Z C, et al. Effects of far-red light on photosynthesis and chlorophyll fluorescence characteristics of lettuce[J]. Jiangsu J Agric Sci, 2022, 38(1):181-189.DOI:10.3969/j.issn.1000-4440.2022.01.022.
[72]
MURCHIE E H, NIYOGI K K. Manipulation of photoprotection to improve plant photosynthesis[J]. Plant Physiol, 2010, 155(1):86-92.DOI:10.1104/pp.110.168831.
[73]
BETTI M, BAUWE H, BUSCH F A, et al. Manipulating photorespiration to increase plant productivity:recent advances and perspectives for crop improvement[J]. J Exp Bot, 2016, 67(10):2977-2988.DOI:10.1093/jxb/erw076.
[74]
SIMKIN A J, MCAUSLAND L, LAWSON T, et al. Overexpression of the RieskeFeS protein increases Electron transport rates and biomass yield[J]. Plant Physiol, 2017, 175(1):134-145.DOI:10.1104/pp.17.00622.
[75]
VON CAEMMERER S, QUICK W P, FURBANK R T. The development of C4 rice:current progress and future challenges[J]. Science, 2012, 336(6089):1671-1672.DOI:10.1126/science.1220177.
[76]
SHAMEER S, BAGHALIAN K, CHEUNG C Y M, et al. Computational analysis of the productivity potential of CAM[J]. Nat Plants, 2018, 4(3):165-171.DOI:10.1038/s41477-018-0112-2.
[77]
孙萌萌, 王莹慧, 汪育文, 等. 南粳5055及其亲本的光合特性[J]. 江苏农业学报, 2020(1):1-9.
SUN M M, WANG Y H, WANG Y W, et al. Photosynthetic characteristics of japonica rice cultivar Nanjing 5055 and its parents[J]. Jiangsu J Agric Sci, 2020(1):1-9.DOI:10.3969/j.issn.1000-4440.2020.01.001.
[78]
DE SOUZA A P, BURGESS S J, DORAN L, et al. Soybean photosynthesis and crop yield are improved by accelerating recovery from photoprotection[J]. Science, 2022, 377(6608):851-854. DOI: 10.1126/science.adc9831.
[79]
武小芬, 陈亮, 齐慧, 等. 辐照协同甲酸分离油茶壳中纤维素、木质素和木糖的工艺研究[J]. 核农学报, 2020, 34(9):1975-1982.
WU X F, CHEN L, QI H, et al. Separation process of cellulose,lignin and xylose from Camellia oleifera shell by irradiation and formic acid[J]. Journal of Nuclear Agricultural Sciences, 2020, 34(9):1975-1982. DOI: 10.11869/j.issn.100-8551.2020.09.1975.
PDF(1712 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/