Effects of the compound inoculation of two arbuscular mycorrhizal(AM) fungi on the resistance of Populus pseudo-cathayana × P. deltoides leaves to Hyphantria cunea

FANG Jing, ZHANG Shuman, YAN Shanchun, WU Shuai, ZHAO Jiaqi, MENG Zhaojun

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (2) : 144-154.

PDF(2724 KB)
PDF(2724 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (2) : 144-154. DOI: 10.12302/j.issn.1000-2006.202209054

Effects of the compound inoculation of two arbuscular mycorrhizal(AM) fungi on the resistance of Populus pseudo-cathayana × P. deltoides leaves to Hyphantria cunea

Author information +
History +

Abstract

【Objective】 In order to study a new way of biological control of pests on Populus pseudo-cathayana × P. deltoides leaves, the effects of compound inoculation with arbuscular mycorrhizal (AM) fungi on the resistance of P. pseudo-cathayana×P. deltoides leaves to Hyphantria cunea were investigated. 【Method】 One-year-old P. pseudo-cathayana × P. deltoides cuttings were inoculated with Rhizophagus intraradices (RI) and Funneliformis mosseae (FM) by single and mixed inoculation (M) in a greenhouse, with no inoculation (CK) as the control. The chemical defense ability of secondary metabolites, defense enzymes and protease inhibitors in poplar leaves was determined, and the larva of H. cunea was used as a bioassay object to determine its anti-insect effect.【Result】 In 120 days, the mycorrhizal infection rate, arbuscular growth rate and number of vesicles in the root of the M group were higher than those of the FM and RI groups. Meanwhile, the M group could improve the chemical defense ability of the leaves of P. pseudo-cathayana × P. deltoides to a certain extent. The contents of total alkaloids and cellulose and the activities of peroxidase (POD), catalase (CAT), lipoxygenase (LOX), polyphenol oxidase (PPO), chymotrypsin inhibitor (CI) and trypsin inhibitor (TI) in leaves were significantly higher than those in the RI, FM and CK groups (P<0.05). The food intake, fecal output, cellulase activity, acetylcholinesterase (AchE) activity and multifunctional oxidase (MFO) activity of the third instar larvae in the M group were significantly lower than those in the FM, RI and CK groups (P<0.05). The body length, food availability, trypsin activity, carboxylesterase (CarE) activity, and glutathione S-transferase (GSTs) activity of the third instar larvae were significantly higher than those of the RI and FM groups (P<0.05). The food consumption rate and α-amylase activity of the third instar larvae did not significantly differ from those of the RI group, and the body weight of the third instar larvae did not significantly differ from those of the FM group. Body weight, food intake, food consumption rate, cellulase activity, GSTs activity, CarE activity, AchE activity and MFO activity of the fourth instar larvae were significantly lower than those of the FM, RI and CK groups (P<0.05), the fecal output of the fourth instar larvae was significantly lower than that of the RI and CK groups (P<0.05), and the trypsin activity of the fourth instar larvae was significantly higher than that of the other three groups (P<0.05). The body length and food availability of the fourth instar larvae did not significantly differ from those of the RI group, and the α-amylase activity of the fourth instar larvae did not significantly differ from those of the FM and RI groups. The body length, body weight, food intake, fecal output, food utilization, α-amylase activity, cellulase activity, GSTs activity, CarE activity, and MFO activity of the fifth instar larvae were significantly lower than those in the FM, RI and CK groups (P<0.05). The food consumption rate of the fifth instar larvae was significantly lower than that in the FM and RI groups, and the AchE activity of the fifth instar larvae was significantly lower than that in the FM group (P<0.05). The trypsin activity of the fifth instar larvae was significantly higher than that of the other three groups (P <0.05).【Conclusion】 The mixed inoculation of RI and FM could induce the chemical defense performance of P. pseudo-cathayana × P. deltoides leaves in the aspects of secondary metabolites, defense enzymes, and protease inhibitors. The anti-insect performance of combined RI and FM inoculation was better than that of single RI and FM inoculation and no AM fungi inoculation and had certain inhibitory effect on the larva of H. cunea. In practical application, combined RI and FM inoculation can be prioritized.

Key words

arbuscular mycorrhizal (AM) fungi / Rhizophagus intraradices / Funneliformis mosseae / compound inoculation / Populus pseudo-cathayana × P. deltoids / Hyphantria cunea

Cite this article

Download Citations
FANG Jing , ZHANG Shuman , YAN Shanchun , et al . Effects of the compound inoculation of two arbuscular mycorrhizal(AM) fungi on the resistance of Populus pseudo-cathayana × P. deltoides leaves to Hyphantria cunea[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(2): 144-154 https://doi.org/10.12302/j.issn.1000-2006.202209054

References

[1]
SCHOWALTER T D, RING D R. Biology and management of the fall webworm, Hyphantria cunea (Lepidoptera: Erebidae)[J]. J Integ Pest Manage, 2017, 8(1): 1-6. DOI: 10.1093/jipm/pmw019.
[2]
ZOU H, ZHANG B, ZOU C, et al. Knockdown of GFAT disrupts chitin synthesis in Hyphantria cunea larvae[J]. Pestic Biochem Physiol, 2022, 188(9): 1-9. DOI: 10.1016/j.pestbp.2022.105245.
[3]
SUN L L, LIU P, SUN S H, et al. Transcriptomic analysis of interactions between Hyphantria cunea larvae and nucleopolyhedrovirus[J]. Pest Manage Sci, 2019, 75(4): 1024-1033. DOI: 10.1002/ps.5212.
[4]
王幼珊, 刘润进. 球囊菌门丛枝菌根真菌最新分类系统菌种名录[J]. 菌物学报, 2017, 36(7): 820-850.
WANG Y S, LIU R J. A checklist of arbuscular mycorrhizal fungi in the recent taxonomic system of Glomeromycota[J]. Mycosystema, 2017, 36(7):820-850. DOI: 10.13346/j.mycosystema.170078.
[5]
GUTJAHR C, PARNISKE M. Cell and developmental biology of arbuscular mycorrhiza symbiosis[J]. Annu Rev of Cell Dev Biol, 2013, 29(1): 593-617. DOI: 10.1146/annurev-cellbio-101512-122413.
[6]
张可可, 蒋德明, 余海滨, 等. 接种菌根菌剂对科尔沁沙地4种造林幼苗生长特性的影响[J]. 生态学杂志, 2017, 36(7):1791-1800.
ZHANG K K, JIANG D M, YU H B, et al. Impacts of mycorrhizal fungi inoculum on growth characteristics of four kinds of afforestation seedlings in Horqin sandy land, China[J]. Chin J Ecol, 2017, 36(7): 1791-1800. DOI: 10.13292/j.1000-4890.201707.036.
[7]
PARNISKE M. Arbuscular mycorrhiza: the mother of plant root endosymbiosis[J]. Nat Rev Microbiol, 2008, 6(10): 763-775. DOI: 10.1038/nrmicro1987.
[8]
黄小辉, 陈道静, 冯大兰. 不同基质条件下丛枝菌根真菌对桑树生长的影响[J]. 南京林业大学学报(自然科学版), 2019, 43(3): 9-16.
HUANG X H, CHEN D J, FENG D L. The effects of arbuscular mycorrhiza fungi on the growth of mulberry in different nursery substrates[J]. J Nanjing For Univ(Nat Sci Ed), 2019, 43(3): 9-16. DOI: 10.3969/j.issn.1000-2006.201810005.
[9]
张伟珍, 段廷玉. AM真菌对箭筈豌豆响应豌豆蚜取食的影响[J]. 草地学报, 2019, 27(6): 1518-1525.
ZHANG W Z, DUAN T Y. Effect of AM fungus on the responses of common vetch to Acyrthosiphon pisum infection[J]. Acta Agrestia Sin, 2019, 27(6): 1518-1525. DOI: 10. 11733/j.issn.1007-0435.2019.06.008.
[10]
POZO M J, AZCÓN-AGUILAR C. Unraveling mycorrhiza-induced resistance[J]. Curr Opin Plant Biol, 2007, 10(4): 393-398. DOI: 10.1016/j.pbi.2007.05.004.
[11]
王小菲, 高文强, 刘建锋, 等. 植物防御策略及其环境驱动机制[J]. 生态学杂志, 2015, 34(12): 3542-3552.
WANG X F, GAO W Q, LIU J F, et al. Plant defensive strategies and environment-driven mechanisms[J]. Chin J Ecol, 2015, 34(12): 3542-3552. DOI:10.13292/j.1000-4890.2015.0333.
[12]
禹海鑫, 叶文丰, 孙民琴, 等. 植物与植食性昆虫防御与反防御的三个层次[J]. 生态学杂志, 2015, 34(1): 256-262.
YU H X, YE W F, SUN M Q, et al. Three levels of defense and anti-defense responses between host plants and herbivorous insects[J]. Chin J Ecol, 2015, 34(1): 256-262. DOI: 10. 13292/j.1000-4890.2015.0036.
[13]
FORMENTI L, RASMANN S. Mycorrhizal fungi enhance resistance to herbivores in tomato plants with reduced jasmonic acid production[J]. Agronomy, 2019, 9(3): 131. DOI: 10.3390/agronomy9030131.
[14]
ROGER A, GETAZ M, RASMANN S, et al. Identity and combinations of arbuscular mycorrhizal fungal isolates influence plant resistance and insect preference[J]. Ecol Entomol, 2013, 38(4): 330-338. DOI: 10.1111/een.12022.
[15]
JIANG D, TAN M T, WU S, et al. Defense responses of arbuscular mycorrhizal fungus-colonized poplar seedlings against gypsy moth larvae: a multiomics study[J]. Hortic Res, 2021, 8(1): 245. DOI: 10.1038/s41438-021-00671-3.
[16]
李虹谕, 卫星, 徐庆祥. 接种丛枝菌根真菌对水曲柳实生苗光合特性和叶片解剖结构的影响[J]. 东北林业大学学报, 2019, 47(10): 49-54.
LI H Y, WEI X, XU Q X. Photosynthetic functions and anatomical structure variations of Fraxinus mandshurica seedling leaf after AMF inoculation[J]. J Northeast For Univ, 2019, 47(10): 49-54. DOI: 10.13759/j.cnki.dlxb.2019.10.011.
[17]
张勇, 张守攻, 齐力旺, 等. 杨树——林木基因组学研究的模式物种[J]. 植物学通报, 2006, 22(3): 286-293.
ZHANG Y, ZHANG S G, QI L W, et al. Poplar as a model for forest tree in genome research[J]. Chin Bull Bot, 2006, 23(3): 286-293.
[18]
ROONEY D C, PROSSER J I, BENDING G D, et al. Effect of arbuscular mycorrhizal colonisation on the growth and phosphorus nutrition of Populus euramericana cv. Ghoy[J]. Biomass Bioe-nergy, 2011, 35(11): 4605-4612. DOI: 10.1016/j.biombioe.2011.08.015.
[19]
刘润进, 陈应龙. 菌根学[M]. 北京: 科学出版社, 2007: 1-447.
LIU R J, CHEN Y L. Mycorrhizology[M]. Beijing: Science Press, 2007: 1-447.
[20]
刘凯洋, 邱智军, 张巧明, 等. 丛枝菌根真菌对砷胁迫下棉花根系形态和生理特征的影响[J]. 西北植物学报, 2021, 41(7): 1188-1198.
LIU K Y, QIU Z J, ZHANG Q M, et al. Effect of arbuscular mycorrhizal fungi on root morphological and physiological characteristics of cotton under arsenic stress[J]. Acta Bot Boreali-Occidentalia Sin, 2021, 41(7): 1188-1198. DOI: 10.7606/j.issn.1000-4025.2021.07.1188.
[21]
孙兴华, 周晓榕, 庞保平, 等. 南美斑潜蝇为害对黄瓜叶片中蛋白酶抑制剂活性及葫芦素B含量的影响[J]. 应用昆虫学报, 2014, 51(1): 169-177.
SUN X H, ZHOU X R, PANG B P, et al. Effects of Liriomyza huidobrensis (Blanchard) larval infestation on trypsin and chymotrypsin activity and cucurbitacin B content in cucumber leaves[J]. Chin J Appl Entomol, 2014, 51(1): 169-177. DOI: 10.7679/j.issn.2095-1353.2014.019.
[22]
JIANG D, WU S, TAN M T, et al. The high adaptability of Hyphantria cunea larvae to cinnamic acid involves in detoxification, antioxidation and gut microbiota response[J]. Pestic Biochem Physiol, 2021, 174(2): 1-9. DOI: 10.1016/j.pestbp.2021.104805.
[23]
YAZDANFAR H, GHODSKHAHDARIAII M, JALALISENDI J. The effects of host plants on the feeding indices and chemical activities of elm leaf beetle,Xanthogaleruca luteola (Muller) (Coleoptera: Chrysomelidae)[J]. Iran Agric Res, 2016, 35(1): 81-87. DOI: 10.22099/IAR.2016.3697.
[24]
徐正浩, 崔绍荣, 何勇, 等. 植物次生代谢物质和害虫防治[J]. 植物保护, 2004, 30(4): 8-11.
XU Z H, CUI S R, HE Y, et al. Plant secondary metabolites and their effects on insect management[J]. Plant Prot, 2004, 30(4): 8-11.
[25]
雒珺瑜, 崔金杰, 辛惠江. 棉花叶片纤维素和木质素含量与绿盲蝽抗性的关系[J]. 西北农林科技大学学报(自然科学版), 2012, 40(4): 81-85.
LUO J Y, CUI J J, XIN H J. Relationship between the contents of cellulose and lignin in cotton leaf and their resistance to Apolygus lucorum[J]. J Northwest A F Univ (Nat Sci Ed), 2012, 40(4): 81-85. DOI: 10.13207/j.cnki.jnwafu.2012.04.026.
[26]
CHEN X D, KAUR N, HORTON D R, et al. Crude extracts and alkaloids derived from Ipomoea-Periglandula symbiotic association cause mortality of asian citrus psyllid Diaphorina citri Kuwayama (Hemiptera: Psyllidae)[J]. Insects, 2021, 12(10): 1-12. DOI: 10.3390/insects12100929.
[27]
周琳, 冯俊涛, 张锦恬, 等. 雷公藤总生物碱对几种昆虫的生物活性[J]. 植物保护, 2007, 33(6): 60-64.
ZHOU L, FENG J T, ZHANG J T, et al. Bioactivity of the total alkaloid from Tripterygium wilfordii Hook against several important pests[J]. Plant Prot, 2007, 33(6): 60-64. DOI:10.16409/j.cnki.2095-039x.2010.01.016.
[28]
周北雅, 郭艳东, 薛雅鞠, 等. 功能蛋白酶催化及应用进展[J]. 生物加工过程, 2023, 21(4):419-438.
ZHOU B Y, GUO Y D, XUE Y J, et al. Advances in the catalysis and application of functional proteases[J]. Chi J Bio Eng, 2023, 21(4):419-438.DOI:10.3969/j.issn.1672-3678.2023.04.007.
[29]
何应, 马向丽, 任健, 等. 蝗虫取食对毛花雀稗防御酶活性的影响[J]. 草业科学, 2021, 38(11): 2294-2300.
HE Y, MA X L, REN J, et al. Defense enzyme activity of dallisgrass in response to grasshopper feedting[J]. Pratacultural Sci, 2021, 38(11): 2294-2300. DOI: 10.11829/j.issn.1001-0629.2021-0394.
[30]
杨乃博, 伍苏然, 沈林波, 等. 植物抗虫性研究概况[J]. 热带农业科学, 2014, 34(9): 61-68,89.
YANG N B, WU S R, SHEN L B, et al. A review on plant resistance to insect pests[J]. Chin J Trop Agric, 2014, 34(9): 61-68,89.
[31]
HU Y X, WANG Y, DENG J, et al. The structure of a prophenoloxidase (PPO) from Anopheles gambiae provides new insights into the mechanism of PPO activation[J]. BMC Biol, 2016, 14(1): 1-13. DOI: 10.1186/s12915-015-0225-2.
[32]
宋福强, 杨国亭, 孟繁荣, 等. 丛枝菌根(AM)真菌对大青杨苗木根系的影响[J]. 南京林业大学学报(自然科学版), 2005, 29(6): 35-39.
SONG F Q, YANG G T, MENG F R, et al. The effects of arbuscular mycorrhizal fungi on the radicular system of Populus ussuriensis seedlings[J]. J Nanjing For Univ(Nat Sci Ed), 2005, 29(6): 35-39.
[33]
吕敏, 卫甜, 刘怀阿, 等. 昆虫取食和机械损伤对棉花和玉米脂氧合酶活性的诱导作用[J]. 江苏农业科学, 2021, 49(10): 86-90.
LYU M, WEI T, LIU H A, et al. Induction of lipoxygenase activity in cotton and maize by insect feeding and mechanical damage[J]. Jiangsu Agric Sci, 2021, 49(10): 86-90. DOI:10.15889/j.issn.1002-1302.2021.10.016.
[34]
陈宝玲, 杨开太, 黄森, 等. 有益菌根真菌及其互作对带叶兜兰试管苗生理生长的影响[J]. 西南林业大学学报(自然科学), 2022, 42(2): 19-25.
CHEN B L, YANG K T, HUANG S, et al. Effects of mycorrhizal fungi interaction on the growth and physiology of Paphiopedilum hirsutissimum seedlings in vitro[J]. J Southwest For Univ (Nat Sc), 2022, 42(2): 19-25. DOI: 10.11929/j.swfu.202105008.
[35]
JIANG D, ZHOU Y, TAN M, et al. Cd exposure-induced growth retardation involves in energy metabolism disorder of midgut tissues in the gypsy moth larvae[J]. Environ Pollut, 2020, 266(7): 1-11. DOI: 10.1016/j.envpol.2020.115173.
[36]
赵海龙. 苜蓿斑蚜胰蛋白酶抑制剂筛选及效果评价[D]. 沈阳: 沈阳农业大学, 2018.
ZHAO H L. Screening of alfafa trypsin inhibitor and the inhibiting effect on Therioaphis trifolii Monel (Homptera: aphididae)[D]. Shenyang: Shenyang Agricultural University, 2018.
[37]
ZHU-SALZMAN K, KOIWA H, SALZMAN R A, et al. Cowpea bruchid Callosobruchus maculatus uses a three-component strategy to overcome a plant defensive cysteine protease inhibitor[J]. Insect Mol Biol, 2003, 12(2): 135-145. DOI: 10.1046/j.1365-2583.2003.00395.x.
[38]
LOSVIK A, BESTE L, MEHRABI S, et al. The protease inhibitor CI2c Gene induced by bird cherry-oat aphid in barley inhibits green peach aphid fecundity in transgenic Arabidopsis[J]. Int J Mol Sci, 2017, 18(6): 1-16. DOI: 10.3390/ijms18061317.
[39]
任茂琼, 李家慧, 褚旭东, 等. 不同抗性玉米自交系对朱砂叶螨体内解毒酶活性的影响差异[J]. 中国植保导刊, 2017, 37(11): 15-18.
REN M Q, LI J H, CHU X D, et al. Effects on activities of detoxification enzymes in Tetranychus cinnabarinus feeding on maize inbred lines with different resistance[J]. China Plant Prot, 2017, 37(11): 15-18.
[40]
FENG X, LIU N. Functional analyses of house fly carboxyleste-rases involved in insecticide resistance[J]. Front Physiol, 2020, 11(10): 1-11. DOI: 10.3389/fphys.2020.595009.
[41]
ABDELAAL K, ESSAWY M, QURAYTAM A, et al. Toxicity of essential oils nanoemulsion against Aphis craccivora and their inhibitory activity on insect enzymes[J]. Processes, 2021, 9(4): 1-14. DOI: 10.3390/pr9040624.
[42]
李定银, 郅军锐, 张涛, 等. 乙基多杀菌素和乙虫腈对西花蓟马解毒酶和乙酰胆碱酯酶活性的影响[J]. 应用昆虫学报, 2020, 57(6): 1385-1393.
LI D Y, ZHI J R, ZHANG T, et al. Effects of spinetoram and ethiprole on detoxification enzyme andacetylcholin esterase activity in Frankliniella occidentalis (Pergande)[J]. Chin J Applied Entomol, 2020, 57(6): 1385-1393. DOI: 10.7679/j.issn.2095-1353.2020.143.
[43]
王沫. 美国白蛾对植物次生代谢物质的适应性[D]. 哈尔滨: 东北林业大学, 2020.
WANG M. Adaptability of Hyphantria cunea to plant secondary metabolites[D]. Harbin: Northeast Forestry University, 2020.
[44]
MA J, SUN L, ZHAO H, et al. Functional identification and characterization of GST genes in the Asian gypsy moth in response to poplar secondary metabolites[J]. Pestic Biochem and Physiol, 2021, 176(5): 1-9. DOI: 10.1016/j.pestbp.2021.104860.
PDF(2724 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/