Morphological and physiological responses of male and female Ginkgo biloba to temperature changes

WU Changfeng, GUO Jing, WANG Guibin

JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (4) : 150-158.

PDF(1958 KB)
PDF(1958 KB)
JOURNAL OF NANJING FORESTRY UNIVERSITY ›› 2024, Vol. 48 ›› Issue (4) : 150-158. DOI: 10.12302/j.issn.1000-2006.202209064

Morphological and physiological responses of male and female Ginkgo biloba to temperature changes

Author information +
History +

Abstract

【Objective】This study investigated the response mechanism of ginkgo (Ginkgo biloba) to temperature changes and its gender differences, and clarified the relationship between changes in ginkgo morphology and physiological indexes and their corresponding temperature adaptation.【Method】We explored the response of male and female ginkgo trees to temperature changes under field conditions by measuring the growth index, anatomical structure, and metabolite content of adult ginkgo trees in five areas with an average annual precipitation of 990-1 200 mm and average annual temperatures of 9.8, 14.4, 16.3, 18.0 and 19.8 ℃, respectively.【Result】Under suitable living conditions, the leaf area, tree height, breast diameter, photosynthetic rate (Pn), and terpene lactone and polyvalerenol contents increased with the temperature, while the total flavonoids, polyphenols, polysaccharides, and soluble sugars contents decreased. These indicated that a certain degree of warming was beneficial to the growth and photosynthesis of Ginkgo biloba and increased the content of major metabolites such as terpene lactones and polypentenol, yet it was not promoting the accumulation of antioxidant metabolites. The tree height, leaf area, and total flavonoids, polyphenols, polysaccharides, and soluble sugar contents of male plants were marked higher than those of female plants, while the intercellular CO2 concentration (Ci) was lower than that of female plants.【Conclusion】Under natural conditions, both male and female ginkgo can adjust their morphological characteristics, photosynthetic strategies, and metabolite contents according to different temperature conditions to ensure the normal growth of individuals. The annual average temperature of 16.3-18.0 ℃ is the optimal environmental temperature for G. biloba growth. There exist gender differences in the adaptation of G. biloba to temperature, with the male plant exhibiting a superior ability to adapt to temperature changes.

Key words

Ginkgo biloba (ginkgo) / male and female plants / temperature / leaf morphology / photosynthetic characteristics / metabolic index

Cite this article

Download Citations
WU Changfeng , GUO Jing , WANG Guibin. Morphological and physiological responses of male and female Ginkgo biloba to temperature changes[J]. JOURNAL OF NANJING FORESTRY UNIVERSITY. 2024, 48(4): 150-158 https://doi.org/10.12302/j.issn.1000-2006.202209064

References

[1]
AINSWORTH E A, LONG S P. What have we learned from 15 years of free-air CO2 enrichment (FACE)?A meta-analytic review of the responses of photosynthesis,canopy properties and plant production to rising CO2[J]. New Phytol, 2005, 165(2):351-371.DOI: 10.1111/j.1469-8137.2004.01224.x.
[2]
神祥金, 吴正方, 刘彩伶, 等. 长春市木本植物春季物候对气候变化的响应[J]. 中国农学通报, 2012, 28(1):112-117.
SHEN X J, WU Z F, LIU C L, et al. Responses of the spring phenology of woody plants to climate change in Changchun[J]. Chin Agric Sci Bull, 2012, 28(1):112-117.DOI: 10.3969/j.issn.1000-6850.2012.01.022.
[3]
VICENTE E, DIDION-GENCY M, MORCILLO L, et al. Aridity and cold temperatures drive divergent adjustments of European beech xylem anatomy,hydraulics and leaf physiological traits[J]. Tree Physiol, 2022, 42(9):1720-1735.DOI: 10.1093/treephys/tpac029.
[4]
FENG J Q, WANG J H, ZHANG S B. Leaf physiological and anatomical responses of two sympatric Paphiopedilum species to temperature[J]. Plant Divers, 2021, 44(1):101-108.DOI: 10.1016/j.pld.2021.05.001.
[5]
陈华圣, 任莉, 许爱华, 等. 不同龄期性别银杏叶多糖含量的比较研究[J]. 中药材, 2006, 29(11):1139-1141.
CHEN H S, REN L, XU A H, et al. Study on the comparison of polysaccharides in Ginkgo biloba leaves[J]. J Chin Med Mater, 2006, 29(11):1139-1141.DOI: 10.13863/j.issn1001-4454.2006.11.008.
[6]
翟飞飞, 毛金梅, 李海栋, 等. 蒿柳1年生雌雄株幼苗的生长与防御差异研究[J]. 西北农林科技大学学报(自然科学版), 2022, 50(8):46-54.
ZHAI F F, MAO J M, LI H D, et al. Gender-specific differences in growth and defense of one-year-old Salix viminalis seedlings[J]. J Northwest A F Univ (Nat Sci Ed), 2022, 50(8):46-54.DOI: 10.13207/j.cnki.jnwafu.2022.08.006.
[7]
郭丽珠, 孟慧珍, 范希峰, 等. 野牛草雌雄株对不同形态氮素的生理响应差异[J]. 草业学报, 2023, 32(2):65-74.
GUO L Z, MENG H Z, FAN X F, et al. Physiological responses of female and male Buchloe dactyloides plants to different nitrogen forms[J]. Acta Prataculturae Sin, 2023, 32(2):65-74.DOI: 10.11686/cyxb2022035.
[8]
黄科朝, 胥晓, 李霄峰, 等. 小五台山青杨雌雄植株树轮生长特性及其对气候变化的响应差异[J]. 植物生态学报, 2014, 38(3):270-280.
HUANG K C, XU X, LI X F, et al. Gender-specific characteristics of tree-ring growth and differential responses to climate change in the dioecious tree Populus cathayana in Xiaowutai Mountains,China[J]. Chin J Plant Ecol, 2014, 38(3):270-280.DOI: 10.3724/SP.J.1258.2014.00024.
[9]
ZHAO H X, LI Y P, ZHANG X L, et al. Sex-related and stage-dependent source-to-sink transition in Populus cathayana grown at elevated CO2 and elevated temperature[J]. Tree Physiol, 2012, 32(11):1325-1338.DOI: 10.1093/treephys/tps074.
[10]
曲红艳. 支气管哮喘采用银杏内酯雾化吸入治疗的效果观察[J]. 中国继续医学教育, 2019, 11(5):138-139.
QU H Y. Observation on the effect of ginkgolides inhalation therapy for bronchial asthma[J]. China Continuing Med Educ, 2019, 11(5):138-139.DOI: 10.3969/j.issn.1674-9308.2019.05.060.
[11]
肖斯婷, 曹春然, 刘红艳, 等. 银杏叶提取物的药学研究进展[J]. 中国药事, 2022, 36(4):429-443.
XIAO S T, CAO C R, LIU H Y, et al. Advances in pharmaceutical research of extracts from Ginkgo biloba leaves[J]. Chin Pharm Aff, 2022, 36(4):429-443.DOI: 10.16153/j.1002-7777.2022.04.008.
[12]
STRAIN M L, YINGLING M N, KRALETI S, et al. Rhabdomyolysis after Ginkgo biloba and cannabis[J]. Pharmacy Practice And Res, 2019, 49(4):368-372.DOI: 10.1002/jppr.1560.
[13]
ZIMMERMANN M, COLCIAGHI F, CATTABENI F, et al. Ginkgo biloba extract:from molecular mechanisms to the treatment of Alzhelmer’s disease[J]. Cell Mol Biol, 2002, 48(6):613-623.
[14]
FEHSKE C J, LEUNER K, MÜLLER W E. Ginkgo biloba extract (EGb761) influences monoaminergic neurotransmission via inhibition of NE uptake,but not MAO activity after chronic treatment[J]. Pharmacol Res, 2009, 60(1):68-73.DOI: 10.1016/j.phrs.2009.02.012.
[15]
GUO Y, WANG M K, GAO C Y, et al. Spatial prediction and delineation of Ginkgo biloba production areas under current and future climatic conditions[J]. Ind Crops Prod, 2021, 166:113444.DOI: 10.1016/j.indcrop.2021.113444.
[16]
徐友, 曹福亮, 汪贵斌, 等. 温度和光强对银杏生长的影响[J]. 林业科技开发, 2015, 29(4):41-45.
XU Y, CAO F L, WANG G B, et al. Influence of the temperature and light intensity on the growth of ginkgo[J]. China For Sci Technol, 2015, 29(4):41-45.DOI: 10.13360/j.issn.1000-8101.2015.04.009.
[17]
徐友, 王欢利, 汪贵斌, 等. 温度和光照强度对银杏叶黄酮合成的影响[J]. 中南林业科技大学学报, 2016, 36(4):30-34.
XU Y, WANG H L, WANG G B, et al. Effects of temperature and light intensity on flavonoid biosynthesis of ginkgo(Ginkgo biloba L.) leaves[J]. J Cent South Univ For Technol, 2016, 36(4):30-34.DOI: 10.14067/j.cnki.1673-923x.2016.04.006.
[18]
国颖. 气候变化背景下银杏分布预测及表型性状的环境响应机制研究[D]. 南京: 南京林业大学, 2021.
GUO Y. Prediction of ginkgo distribution and research on environmental response mechanism of phenotypic traits under the climate change[D]. Nanjing: Nanjing Forestry University, 2021.DOI: 10.27242/d.cnki.gnjlu.2021.000033
[19]
WANG T L, WANG G Y, INNES J L, et al. ClimateAP:an application for dynamic local downscaling of historical and future climate data in Asia Pacific[J]. Front Agr Sci Eng, 2017, 4(4):448.DOI: 10.15302/j-fase-2017172.
[20]
GUO Y, GUO J, SHEN X, et al. Predicting the bioclimatic habitat suitability of Ginkgo biloba L.in China with field-test validations[J]. Forests, 2019, 10(8):705.DOI: 10.3390/f10080705.
[21]
GUO Y, LU Y, EL-KASSABY Y A, et al. Predicting growth and habitat responses of Ginkgo biloba L.to climate change[J]. Ann For Sci, 2019, 76(4):101.DOI: 10.1007/s13595-019-0885-0.
[22]
许继业, 郁万文, 曹福亮, 等. 不同雄株银杏叶提取液抗氧化能力及主要功能成分含量差异[J]. 食品与发酵工业, 2022, 48(5):142-149.
XU J Y, YU W W, CAO F L, et al. The differential analysis of antioxidant capacity and main functional components content of leaf extraction from different Ginkgo biloba male plants[J]. Food Ferment Ind, 2022, 48(5):142-149.DOI: 10.13995/j.cnki.11-1802/ts.027908.
[23]
郁万文, 罗天宇, 曹福亮, 等. 不同品种和树龄银杏叶聚戊烯醇含量的年动态特征[J]. 经济林研究, 2019, 37(2):1-6.
YU W W, LUO T Y, CAO F L, et al. Annual dynamic characteristics of polyprenol contents in leaves of different varieties of Ginkgo biloba at different tree ages[J]. Non Wood For Res, 2019, 37(2):1-6.DOI: 10.14067/j.cnki.1003-8981.2019.02.001.
[24]
冯进, 李敏, 曾晓雄, 等. 大孔树脂纯化蓝莓叶多酚及其组成分析[J]. 食品科学, 2013, 34(10):86-91.
FENG J, LI M, ZENG X X, et al. Macroporous resin purification and composition analysis of polyphenols from blueberry leaves[J]. Food Sci, 2013, 34(10):86-91.DOI: 10.7506/spkx1002-6630-201310019.
[25]
DIAZ S, CABIDO M, CASANOVES F. Plant functional traits and environmental filters at a regional scale[J]. J Veg Sci, 1998, 9(1):113-122.DOI: 10.2307/3237229.
[26]
ROCHE P, DÍAZ-BURLINSON N, GACHET S. Congruency analysis of species ranking based on leaf traits:which traits are the more reliable?[J]. Plant Ecol, 2004, 174(1):37-48.DOI: 10.1023/B:VEGE.0000046056.94523.57.
[27]
徐友. 温度和光强对银杏生长和次生代谢产物合成的影响[D]. 南京: 南京林业大学, 2016.
XU Y. Effects of temperature and light intensity on growth and secondary metabolites biosynthesis of ginkgo(Ginkgo biloba L.) leaves[D]. Nanjing: Nanjing Forestry University, 2016.
[28]
黄鑫浩. 苦楝光合作用对Zn胁迫的响应和适应机制研究[D]. 长沙: 中南林业科技大学, 2021.
HUANG X H. Response and adaptive mechanism of photosynthesis of Melia azedarach to Zn stress[D]. Changsha: Central South University of Forestry & Technology, 2021.DOI: 10.27662/d.cnki.gznlc.2021.000005.
[29]
钱文武, 郭鹏, 朱慧森, 等. 草地早熟禾叶片表皮特征、解剖结构及光合特性对不同施氮量的响应[J]. 草业学报, 2023, 32(1):131-143.
QIAN W W, GUO P, ZHU H S, et al. Responses of leaf epidermis,anatomical structure and photosynthetic characteristics of Poa pratensis to different nitrogen application level[J]. Acta Prataculturae Sin, 2023, 32(1):131-143.DOI: 10.11686/cyxb2021498.
[30]
WU G Y, HUI J A, WANG Z H, et al. Photosynthetic characteristics of four wild Dendrobium species in China[J]. HortScience, 2014, 49(8):1023-1027.DOI: 10.21273/hortsci.49.8.1023.
[31]
GREER D H, WEEDON M M. Modelling photosynthetic responses to temperature of grapevine (Vitis vinifera cv.Semillon) leaves on vines grown in a hot climate[J]. Plant Cell Environ, 2012, 35(6):1050-1064.DOI: 10.1111/j.1365-3040.2011.02471.x.
[32]
赵宏瑾, 朱仲元, 王喜喜, 等. 不同生育期榆树净光合速率对生态因子和生理因子的响应[J]. 生态学报, 2016, 36(6):1645-1651.
ZHAO H J, ZHU Z Y, WANG X X, et al. Effect of ecological factors and physiological factors on the net photosynthetic rate of Ulmus pumila at various growth stages[J]. Acta Ecol Sin, 2016, 36(6):1645-1651.DOI: 10.5846/stxb201408061569.
[33]
黄曦叶, 何林江, 刘金平, 等. 葎草水分和光合特征及抗性物质含量响应冬季降温的性别差异[J]. 草业学报, 2020, 29(2):103-113.
HUANG X Y, HE L J, LIU J P, et al. Gender differences in water relations,photosynthetic characteristics and cold resistance metabolites in Humulus scandens in response to winter cooling[J]. Acta Prataculturae Sin, 2020, 29(2):103-113.DOI: 10.11686/cyxb2019231.
[34]
杨扬, 周斌, 赵文杰. 银杏叶史话:中药/植物药研究开发的典范[J]. 中草药, 2016, 47(15):2579-2591.
YANG Y, ZHOU B, ZHAO W J. Ginkgo biloba leaves history:a model of research and development for Chinese materia medica/phytomedicine[J]. Chin Tradit Herb Drugs, 2016, 47(15):2579-2591.DOI: 10.7501/j.issn.0253-2670.2016.15.001.
[35]
王鼎豪. NAA和多效唑对银杏叶黄酮和萜内酯合成与积累的影响[D]. 南京: 南京林业大学, 2021.
WANG D H. Effects of naphthylacetic acid and paclobutrazol on the synthesis and accumulation of flavonoids and terpenoids in Ginkgo biloba L.leaves[D]. Nanjing: Nanjing Forestry University, 2021.DOI: 10.27242/d.cnki.gnjlu.2021.000183.
[36]
GUO J, ZHOU X, WANG T L, et al. Regulation of flavonoid metabolism in ginkgo leaves in response to different day-night temperature combinations[J]. Plant Physiol Biochem, 2020, 147:133-140.DOI: 10.1016/j.plaphy.2019.12.009.
[37]
罗天宇. 银杏叶聚戊烯醇的含量分析及其提取分离研究[D]. 南京: 南京林业大学, 2017.
LUO T Y. Study on content variation and extraction-separation of polyprenols form Ginkgo biloba leaves[D]. Nanjing: Nanjing Forestry University, 2017.
[38]
BAJDA A, CHOJNACKI T, HERTEL J, et al. Light conditions alter accumulation of long chain polyprenols in leaves of trees and shrubs throughout the vegetation season[J]. Acta Biochim Pol, 2005, 52(1):233-241.
[39]
郁丹红, 姜玮, 姚鑫, 等. 基于UPLC-TQ-MS考察不同树龄银杏叶双黄酮含量变化规律[J]. 中国实验方剂学杂志, 2019, 25(18):145-149.
YU D H, JIANG W, YAO X, et al. Determination of biflavones in Ginkgo biloba leaves of different ages by UPLC-TQ-MS[J]. Chin J Exp Tradit Med Formulae, 2019, 25(18):145-149.DOI: 10.13422/j.cnki.syfjx.20191414.
[40]
闫旭宇, 李娟, 任潘, 等. 银杏叶多酚超声辅助提取工艺及其对羟自由基的清除作用[J]. 食品研究与开发, 2020, 41(19):99-104.
YAN X Y, LI J, REN P, et al. Optimization of polyphenols from Ginkgo biloba leaves by ultrasound-assisted extraction and its scavenging capacity on hydroxyl free radicials[J]. Food Res Dev, 2020, 41(19):99-104.DOI: 10.12161/j.issn.1005-6521.2020.19.018.
[41]
BOO H O, HEO B G, GORINSTEIN S, et al. Positive effects of temperature and growth conditions on enzymatic and antioxidant status in lettuce plants[J]. Plant Sci, 2011, 181(4):479-484.DOI: 10.1016/j.plantsci.2011.07.013.
[42]
何彩文. 温度对采后灵芝多糖和灵芝酸代谢的影响[D]. 福州: 福建师范大学, 2020.
HE C W. Effect of temperature on metabolism of polysaccharide and ganoderic acids in postharvest Ganoderma lucidum[D]. Fuzhou: Fujian Normal University, 2020.DOI: 10.27019/d.cnki.gfjsu.2020.001857.
[43]
岳世彦, 周荣荣, 南铁贵, 等. 粉葛与葛根中主要化学成分的含量比较[J]. 中国中药杂志, 2022, 47(10):2689-2697.
YUE S Y, ZHOU R R, NAN T G, et al. Comparison of major chemical components in Puerariae thomsonii Radix and Puerariae lobatae Radix[J]. China J Chin Mater Med, 2022, 47(10):2689-2697.DOI: 10.19540/j.cnki.cjcmm.20220117.202.
[44]
郭海燕, 段婧, 刘金平, 等. 温度对雌雄葎草生理代谢及保护酶系统影响的性别差异[J]. 草业学报, 2017, 26(10):198-206.
GUO H Y, DUAN J, LIU J P, et al. Gender differences in physiology and enzyme activity in response to temperature in Humulus scandens[J]. Acta Prataculturae Sin, 2017, 26(10):198-206.DOI: 10.11686/cyxb2016493.
[45]
吴雅琼, 国靖, 周琦, 等. 不同产地银杏黄酮及相关活性物质含量变异分析[J]. 南京林业大学学报(自然科学版), 2019, 43(3):183-188.
WU Y Q, GUO J, ZHOU Q, et al. Variation analysis of flavonoids and related active substances content in ginkgo leaves from different regions[J]. J Nanjing For Univ (Nat Sci Ed), 2019, 43(3):183-188.DOI: 10.3969/j.issn.1000-2006.201803004.
PDF(1958 KB)

Accesses

Citation

Detail

Sections
Recommended
The full text is translated into English by AI, aiming to facilitate reading and comprehension. The core content is subject to the explanation in Chinese.

/